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Abstract 
Information visualizations on large, high-resolution displays (in the following, 
simply described as large displays) enable analysis of massive amounts of data 
by means of the sheer amount of pixels. Additionally, large displays with suffi-
cient detail to enable close-up work provide what I define as abundant display 
space. Abundant display space allow people to organise visualizations and pro-
vide “space to think”. Touch interactions might facilitate such organisation. 
The present thesis draws on the fields of human-computer interaction (HCI) 
and information visualization (InfoVis) to investigate the principal research 
question: How may abundant display space support visualization-based data 
analysis? 

I base the thesis on four research papers: 

In Paper I, we studied data analysis in a broad range of domains, and sought to 
answer how abundant display space may influence data analysis in these do-
mains. We collected empirical data from eleven workshops with groups of two 
to three data analysts in varied domains (e.g., artistic photography, phone log 
analysis, astrophysics, and public health care analysis). We used grounded the-
ory to analyse the collected data. From this, we identified six themes relating to 
the use of abundant display space. Most importantly, we identified themes that 
related to space and time. At one extreme, a visualization may take up an entire 
display. At the other extreme, many small visualizations may be organised spa-
tially by people. Abundant display space may thus facilitate “space to think” 
with visualizations. 

In Paper II, we studied the possibilities for combining information visualiza-
tions and interaction based on users’ position and orientation. We conducted 
formative evaluations of three interfaces that compared these interaction possi-
bilities to mouse based interaction with information visualizations on large dis-
plays. 

In Paper III, we described F3, an interactive system for large touch displays. F3 
provided interaction techniques that facilitate creating and combining visualiza-
tions based on an underlying data cube model. F3 visualized data from the Dan-
ish health care system. Specifically, the data described patient activities per-
formed on approximately 50 hospitals, and described about twelve million pa-
tient contacts per year. We evaluated F3 in two user studies. The studies sought 
to (a) evaluate the system in terms of walk-up usability in a lab-based formative 
study, and (b) to evaluate the system in terms of real use, based on deploying 
F3 for two weeks with a group of health care analysts. The paper described the 
interaction techniques in F3 and reported findings from the studies based on in-
terviews and observations data.  
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In Paper IV, we studied the diverse possibilities for showing relations between 
visualization views organised with the use of abundant display space. In partic-
ular, when many views are organised manually, it becomes necessary to sup-
port people in understanding the relations between the views. In the study, we 
conducted ten sessions with visualization and interaction experts that evaluated 
seven designs of visualization relations. In addition to evaluating our designs, 
participants sketched their own designs. A subsequent analysis based on 
grounded theory revealed a number of themes pertaining to showing relations. 
These findings, in combination with insights from the previous studies were 
used to describe a framework of visualization relations consisting of six dimen-
sions. 

In the final part of the thesis, I compare, contrast, and discuss the employed 
methodologies and findings from the four papers in terms of the principal re-
search question.  



v 

Abstract (Danish) 
Informationsvisualisering på store højopløsningsskærme muliggør visualisering 
af massive datamængder, særligt i kraft af antallet af pixels. Store højopløs-
ningsskærme skærme giver i kraft af deres detaljegrad desuden mulighed for at 
interagere tæt på skærmen og giver hvad jeg kalder oceaner af skærmplads. Det 
giver mennesker mulighed for at organisere visualiseringer og ”plads til at 
tænke”, for eksempel ved hjælp af skærme med touch interaktion. Denne af-
handling benytter forskningsfelterne menneske-maskine interaktion (HCI) og 
informationsvisualisering (InfoVis) for at undersøge hvordan oceaner af 
skærmplads kan give mulighed for at analysere data ved hjælp af visualiserin-
ger. 

Jeg baserer afhandlingen på fire videnskabelige artikler: 

I artikel I undersøgte vi dataanalyse inden for en bred vifte af domæner, og sig-
tede mod at forstå hvordan oceaner af skærmplads kan anvendes til dataanalyse 
i disse domæner. Baseret på resultaterne af 11 workshops med grupper af to til 
tre analytikere i forskellige domæner (f.eks. kunstnerisk fotografi, log-analyse 
af telefonbrug, astrofysik, og analyse af data fra det offentlige sundhedssystem) 
identificerede vi seks temaer der relaterede sig til oceaner af skærmplads. Un-
dersøgelsen ledte til en grundlæggende erkendelse af forholdet mellem skærm-
plads og størrelse på en eller flere visualiseringer: På den ene side, kan en visu-
alisering fylde en hel skærm. På den anden side kan mange små visualiseringer 
organiseres spatialt af mennesker. Oceaner af skærmplads kan således give 
plads til at tænke med visualiseringer. 

I Artikel II undersøgte vi kombination af informationsvisualisering og interak-
tion baseret på brugeres position og orientering. Vi afholdt formative evaluerin-
ger af tre grænseflader, og sammenlignede disse interaktionsmuligheder med 
muse-baseret interaktion på store højopløsningsskærme. 

I Artikel III beskrev vi F3; et interaktivt system til store højopløsningsskærme. 
F3 anvendte interaktionsteknikker der giver mulighed for at danne og kombi-
nere visualiseringer baseret på en underliggende datakube. F3 er designet og 
konstrueret til at kunne visualisere data fra det danske hospitalsvæsen der be-
skriver patientaktiviteter på omtrent 50 hospitaler og cirka 12 millioner patient-
kontakter årligt. Vi evaluerede F3 i to brugerundersøgelser der sigtede mod at 
(a) evaluere systemets umiddelbare brugervenlighed (walk-up usability) i en 
laboratoriebaseret formativ undersøgelse, og (b) evaluere systemet i regulær 
brug, baseret på at opstille F3 hos en gruppe der arbejder med at analysere data 
fra det danske hospitalsvæsen. Artiklen beskrev interaktionsteknikkerne i F3 og 
rapporterede indsigter fra undersøgelserne baseret på data fra interviews og ob-
servationer af brug. 
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I Artikel IV undersøgte vi muligheder for at vise relationer mellem visualiserin-
ger. Det er nødvendigt når mange visualiseringer organiseres ved anvendelse af 
oceaner af skærmplads. Undersøgelsen baserede sig på ti sessioner med visuali-
serings- og interaktionseksperter, der evaluerede syv designs der viste relatio-
ner mellem visualiseringer. I tillæg til at evaluere vores designs, bad vi dem 
også om at skabe deres egne designs. Analyse af data fra sessionerne resulte-
rede i en række temaer knyttet til visualiseringsrelationer. Disse temaer blev i 
kombination med resultater fra de tidligere studier brugt til at definere et meto-
deapparat (framework) for visualiseringsrelationer bestående af seks dimensio-
ner. 

Jeg afslutter afhandlingen med at diskutere de anvendte metoder og opnåede 
resultater i forhold til det grundlæggende forskningsspørgsmål. Jeg baserer 
dette på mine fire forskningsartikler.  
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Chapter 1 
Introduction 
In the last decades, the amount of collected data have risen to levels beyond comprehension, span-
ning data that describe peoples’ wellbeing, objects’ whereabouts, and organisations’ activities (e.g., 
in health care). It is, for example estimated that the Internet alone consisted of around 4.4 Zettabytes 
in 2013 [149].  In short, we are stockpiling data under the assumption that emerging tools and tech-
nology will add value to all this data. 

There is a clear need for humans to understand data. In this chapter, I first introduce data analysis, 
and subsequently visualizations as a method to gain knowledge of and understand data. Second, I 
present arguments for supporting this need grounded in the information visualization field. In the 
next chapter, I describe work that relates to my contributions. 

Humans analyse data to gain knowledge. In this thesis, I use the term data analysis in a broad sense 
to denote gathering, organizing, reading, extracting, visualizing, checking, and narrating data. It is 
related to sensemaking [119] as well as to the types of activity supported in visual analytics [142]. 
At a higher level, data analysis includes the generation of hypotheses from data, discovery of new 
insights in data, and looking through data to understand the distribution of certain characteristics 
[21, 148]. 

Computer Science is, at its root, concerned with processing and analysing data. By processing data, 
computers help gain knowledge of observed phenomena. Since the 1960’ies, computers have ad-
vanced humans’ abilities to collect and comprehend information. Thus, computers might support a 
broad range of activities related to data analysis. 
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However, no tool or technology can carry out data analysis in isolation. We as humans must add 
value to the data, through generating insights, and making more informed, and hopefully wiser deci-
sions. The amount and complexity of data often makes that a challenging task, necessitating both 
useable, useful, and effective tools and techniques. 

Visualization is such a technique. Visualizations help people understand data and make decisions, 
and has been an effective tool for generating insights, and further understanding of phenomena for 
centuries [47]. William Playfair’s time-series graph of prices, wages, and reigning ruler over a 250-
year period and Dr John Snow’s dot Cholera map are examples of early visualizations, which high-
light the cognitive benefits of visualizations. In the recent decades, computer visualizations have 
been successfully applied to numerous disciplines. Computer tools allow rapid generation of visual-
izations and in addition, allow for interactivity, which further supports peoples’ cognition. 

A specific set of visualization techniques are known as information visualizations, and concern the 
visualization of abstract data. This area has been defined as “the idea of using computer-supported, 
interactive, visual representations of abstract data to amplify cognition” [25]. Dissecting this defini-
tion, three important aspects emerge: (1) Interaction, (2) visual representations, and (3) cognition. 
Information visualization concern the idea that we, as humans, through interacting with and inquir-
ing about visual representations can obtain a higher degree of understanding (i.e., cognition). The 
role of interaction and inquiry and its relationship to visual representations is not well understood, 
although it is acknowledged as an important role in data analysis [110, 142, 164]. 

1.1 Research question 
To show visualizations, classic visualization techniques have relied on displays in common use for 
desktop and laptop computers. Recently, large, vertical, high-resolution displays (in the following 
described as large displays) have emerged. These displays might provide people sufficient display 
space for all practical purposes, and thus give people a sense of display space abundance. This is the 
core idea of my research. Thus the central research question guiding this thesis has been:  
 

 

How may abundant display space support visualization-based data analysis? 

 

 

With abundant display space (e.g., provided by large displays), people are free to move around and 
thus less restricted to desks and typical interaction devices (i.e., mouse and keyboard). This how-
ever, implies that such devices are insufficient with abundant display space, and thus necessitates 
alternative and novel input technologies, interaction techniques, and modalities. A large body of my 
work thus focus on providing novel interaction techniques for information visualizations. In my 
work, I have used qualitative methods to explore and cast light on if, how and when the studied 
technologies may help gain knowledge of and understand data. 
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1.2 Thesis overview 
The remaining parts of the thesis are structured as follows: 

Part I comprises this chapter and Chapter 2. In Chapter 2, I outline related work on combining in-
formation visualizations with novel interaction techniques for emerging user interface technologies. 

Part II comprises Chapter 3 to 7. In this part, I describe my contributions to this area through four 
paper contributions. 

Part III comprises Chapter 8 and 9. In Chapter 8, I discuss and contrast the contributions and the 
chosen methodology. Finally, in Chapter 9, I conclude the thesis and point to opportunities for fu-
ture work. 



 

 

 



 

 

 

Chapter 2 
Overview of related work 
My thesis work concerns information visualizations (InfoVis) on large, high-resolution displays (in 
the following described as large displays), driven by novel interaction techniques. In this chapter, I 
give an overview of related work in these areas. 

I structure this chapter as follows: First, I describe combinations of touch and movement with infor-
mation visualizations. This focuses on interaction. Secondly, I describe combinations of information 
visualization and a novel display technology, in the form of large displays. This focuses on visual 
representations. 

2.1 Combining touch and movement with information visualiza-
tions 
Much research have studied mouse and keyboard interaction for information visualizations. How-
ever, numerous alternative input devices exist. For example, touch interaction, mid-air interaction, 
location tracking, presence detection, tangible interaction, and speech interaction. However, re-
search on information visualizations driven by novel input technologies are scarce [90]. Novel input 
technologies may provide more degrees-of-freedom, and thus potentially provide better mapping 
between action and intent [12], and reduce the number of necessary user interface components. In-
put technologies may additionally detect for example proxemics [58] and use these to direct implicit 
and explicit interaction techniques [9]. In addition, novel gesture-based interaction techniques may 
allow for more “natural” interactions [57, 159], which are inspired by how people use their body for 
everyday tasks and reduce the gap between people and technology [90], for example through em-
bodiment. Novel input technologies may also offer device-less and hands-free interactions, which 
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enable new contexts of use for InfoVis such as in meeting rooms (e.g., [22, 157]), museums (e.g., 
[63, 96]) and other public places. 

It is therefore relevant to understand how we might use these novel technologies for interacting with 
information visualizations, and how we might design interaction techniques for them. In the follow-
ing, I describe contributions that sought to study interaction with information visualizations. First, I 
describe contributions that consider touch interaction. Secondly, I describe contributions that con-
sider movement and location of people. 

2.1.1 Touch 
A limited number of studies combine touch interaction and information visualization [90, 115]. 
However, the area seems to gain attention.  

The amount of research on general touch interaction in HCI necessitates narrowing the scope. Spe-
cifically, I leave out the following: 

 Gestural touch interaction. A large body of work exists on gestural touch interaction. In par-
ticular: Gesture design and design methodology (e.g., [161, 163]); detection (e.g., [81, 160]), 
use (e.g., [63]); performance (e.g., [65]); end-user customization (e.g., [108]); size (e.g., [94, 
150]); learnability and memorability (e.g., [1, 102]); naturalness (e.g., [51]); and handedness 
(e.g., [6]). The broad scope of these works makes it difficult to provide a proper description 
of the terms’ use. In the following, I describe what related work has referred to as gestural 
interaction. However, my focus and description rely on the specific ways that people use fin-
gers and hands as part of interactions. 

 Much of the early work that combined touch interaction techniques and information visuali-
zation contributions focused on the novel possibilities afforded by horizontal displays. 
These particularly studied co-located collaboration and the use of space (e.g., [69, 124, 
143]). While these are interesting in relation to this thesis, they have little relevance in touch 
input and interaction techniques. Therefore, I return to these in the following section on 
large displays. 

In the following subsections, I thus outline existing contributions that combine touch interaction 
and information visualization. I do this by considering the possible ways that touch might drive in-
formation visualizations. I describe this first in terms of interacting directly with data points (i.e., 
touching data). Subsequently, I describe interaction techniques, by using the concept of interaction 
instruments [12]. I then describe approaches to design and evaluate touch interaction techniques, 
and the visualization tasks these techniques support. 
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2.1.2 Touching data 
The subsection title touching data refers to studying how people might interact directly with visual-
ized data using touch input. With touch input, designers can create interaction techniques that al-
lows users to be in direct contact with data points. The following considers this aspect, which has 
particular relevance in relation to information visualization. 

North, Dwyer, et al. [107] studied people interacting with a tabletop interface before or after expo-
sure to one of two other interfaces: Mouse and physical. Thus, they divided participants in four 
groups. Participants that initially used the physical interface (PS condition) finished tasks faster 
when they later used the tabletop interface to perform similar tasks, than participants initially used 
the mouse interface (MS condition). Interestingly, participants’ choice of strategy underlined this 
finding, for example in that PS participants were more likely to use multiple fingers in the tabletop 
interface, than MS participants. This suggests the designed (and potentially in general) touch inter-
action techniques mimicked the physical world more closely than the mouse interaction techniques. 
Additionally, it might suggest that this mimicry might not work well in situations where people ex-
pect, or are used to, mouse interactions. 

In a later paper, Dwyer, North et al. [38] described how participants (in the same study) laid out 
graphs (a separate user task in the study) in the mouse and tabletop interfaces. The authors noted 
that the tabletop interface encouraged touch-thinking (i.e., “thinking with the hands”) as “suggested 
by the principles of embodied interaction” [35]. Participants that used on average 277 touches to 
move nodes about 240 times in the tabletop condition, used on average of 103 mouse clicks to move 
nodes 117 times. On average, the participants spent approximately the same time with the two inter-
faces. The authors explained that participants made minor adjustments exclusively in the tabletop 
condition. 

Tabletop displays supports two-handed input, but interaction techniques that leverage these possi-
bilities for information visualization are scarce. Dwyer, North et al. [38]  saw a decrease in the use 
of multi-touch interaction in mentally demanding tasks. This stands in contrast to a 1999 study by 
Leganchuk et al. [92]. This study showed improved performance for bimanual techniques over one-
handed techniques. Moreover, the study improvements increased for mentally demanding tasks. 
Perhaps, the discrepancies are due to the nature of the tasks. In the study by Leganchuk et al., the 
bi-manual interaction techniques were based on Guiard’s kinematic chain model, whereas the study 
by Dwyer, North et al. compared the relative number of contact points for a simple and a complex 
task (sorting and graph layout task). These differences potentially makes the findings incomparable. 
Perhaps interaction techniques tailored for two hands might benefit cognitively demanding tasks, 
whereas performing two simple tasks in parallel might not. 

The notion of touch-thinking suggests that merely touching a data point should have little impact 
and be easily reversible [40]. This seems to be considered in TouchWave [10], that when touching 
the background, show details for streamgraph layers in an overlay. The overlay shows the value for 
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the horizontal positions of touch points. Figure 2.1c shows one of TouchWave’s interaction tech-
niques. This is comparable to interaction techniques that provide additional details by hovering a 
mouse pointer (e.g., [152]), which cannot be transferred directly to touch interactions techniques 
[159].  

In designing touch interaction techniques for scatterplots, Sadana & Stasko [122] considered alter-
native interaction techniques for point selection. Data selection, particularly in scatterplots, demon-
strates the fat finger problem (e.g., [155]). However, the authors ignore the potentially simplest so-
lution, which is to select data points below a finger’s position. Although the authors suggest that no 
ideal solution exists, they do note that many interaction techniques for minimizing the problem has 
been suggested (e.g., [13, 66, 99, 155]). In continuation of the point above, they ignore the issue of 
target loss caused by pointing or touch-thinking. 

2.1.3 Touch interaction techniques 
Where the above focused on touching data points explicitly, I now turn to consider more complex 
touch interaction techniques. In contrast to the simple interactions where a touch point corresponds 
to a single data point selection, these interaction techniques rely on intermediate tools to interact 
with a system, such as on-screen menus (e.g., in WIMP interfaces) and marking menus [87] (e.g., in 
post-WIMP [32] interfaces). 

To describe these interaction techniques, the instrumental interaction [12] model may be used to 
illustrate how interactions may be designed around the use of instruments as mediators of action on 
domain objects. Based on this model, the interaction techniques described by Dwyer, North et al. 
[38], let multiple fingers form a convex hull (the instrument). Figure 2.1b shows parts of their de-
sign. Data points (the domain objects) within the hull were the object of the interaction. The data 
points moved when manipulating the hull with affine transformations. The interaction lasted until 
all fingers were released. This was an example of a technique that had a low degree of indirection, 
both in terms of spatial and temporal offset. The interaction on the instrument was performed al-
most at the same position and at the same time, as the data points (domain objects) were moved. 

                     
Figure 2.1: Left: Rzeszotarski & Kittur’s [120] sieve metaphor for filtering. Center: Dwyer, North et al. [38] 
showed a convex hull based on multiple fingers. Two-finger interactions allowed affine transformations; Right: 
Baur et al. [10] showed values for horizontal positions in stream graphs by touching the background. 
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In contrast to the very direct graph interaction, Rzeszotarski & Kittur designed a filter that used a 
sieve metaphor for Kinetica [120]. Figure 2.1a shows the sieve filter. Dragging a sieve through a set 
of data points would filter away the data points matching the sieve. Focus on the interaction shifted 
from the objects of interest (the data points), to the sieve. The design of the technique resulted in a 
spatial offset between the interaction and the domain objects, while the temporal offset was kept 
low. The spatial offset, while resulting in some indirection, had the added benefit of enabling people 
to see the data points while they filtered the data, and so reduced the “fat finger” problem. Rzeszo-
tarski & Kittur also contributed an inspiring metaphor of interaction based on kinetics. However, 
their work is outside the scope of this overview, due to its negligible relevance to touch. 

Drucker et al. [6] compared two sets of interaction techniques for interacting with bar charts (see 
Figure 2.2). They based the first set of interaction techniques on a menu system inspired by WIMP 
interfaces (designated WIMP). In designing the second set of interaction techniques, the authors 
aimed for more direct, and fluid interaction (designated FLUID). Like North, Dwyer et al, they also 
considered direct interactions with domain objects (here domain objects take the form of data bars 
that represent aggregate data values). For example, flick down on a data bar to exclude the data, 
flick up to exclude all other data, and drag on an axis to sort relative to the direction of the drag.  

In TouchWave, Baur et al. [10] aimed to provide kinetic interactions for stacked area charts. Their 
interaction techniques relied exclusively on direct manipulations on the streamgraphs. For example, 
to show a vertical ruler for horizontal touch location, drag a layer in a streamgraph to extract it, or 
two finger pinch to distort the global horizontal axis using the focus+context technique. They con-
sidered TouchWave’s modeless interaction techniques to be particularly valuable. They argued that 
the modeless interaction techniques were provided by “an interaction set that allowed every type of 
manipulation and measurement to be triggered at any time”. In contrast to this statement, they con-
sidered sub-layering, which they described as only showing sub-layers in a stacked graph of a cer-
tain size of stream, as an effective way to alleviate the fat finger problem. Although this technique 
does not qualify as a mode, it may present some of the same difficulties to people that use it. 

         
Figure 2.2: TouchViz by Drucker et al. [36] compared two user interfaces. In one interface (shown left), interac-
tion was provided by interaction techniques based on Post-WIMP interaction concepts. To filter data, partici-
pants dragged down on a bar chart. In the other interface (shown right), interaction mimicked WIMP interaction. 
To filter data, participants tapped menu items to the right of the bar chart. 



Chapter 2: Overview of related work 

12 

The touch interaction techniques for scatterplots contributed by Sadana & Stasko [122] identified 
alternatives for selection, zooming, filtering, and configuring spatial encoding. Their work provided 
many designs for interacting with data through on-screen instruments. To zoom, they for example 
suggest pinching in the data area, pinching on axis, double tapping a highlighted axis range, pinch-
ing in data area to reveal a zoom lens, and finally double tapping data area to zoom to a predefined 
zoom level. Similar to Sadana & Stasko, Baur et al. [10] used zoom when individual layers were too 
small, for example, for a finger to hit it reliably. 

Frisch et al. [49] elicited a set of interaction techniques for interacting with diagrams using pen and 
touch. The interaction techniques were defined by study participants and refined by experts (i.e. the 
authors). In the process, they identified two mental models for users’ diagram interactions. In the 
first (sketching), users sketch parts of a diagram. In the second (structural editing), a higher level of 
abstraction was present both in the interaction and the intent (e.g., copy node). In addition, they re-
ported that participants had no preference for either pen or touch. This led the authors to suggest to 
facilitate techniques with both input modalities when possible. For example, holding onto a node, 
while dragging with either touch or pen would copy it. Their focus was on creating and editing vis-
ual representations, and less on manipulating them with typical visualization techniques (e.g., filter-
ing, highlighting and sorting). 

Schmidt et al. [123] also contributed touch interaction techniques for node-link diagrams, although 
with a different focus. They provided interaction techniques for performing topology-based tasks 
such as finding adjacent nodes and shortest paths between nodes. They based some of the interac-
tion techniques on previous node-link diagram interaction techniques for mouse input [162]. The 
authors argued that using multiple techniques simultaneously broadened the set of interaction possi-
bilities, and felt more natural and straightforward than if restrained to an interface based on a single 
mouse pointer. 

Walny et al. [157] studied pen and touch interactions in a Wizard of Oz study. Browne et al. [22] 
described SketchViz which were based on sketching interactions. Due to the lack of detailed de-
scriptions of the touch interaction techniques in these contributions they are outside the scope of 
this section, and will be returned to in the next section on large displays. 

Many of the interaction techniques described above have focused on using the space available on 
e.g., an iPad. While these are valuable contributions, they say little about using visualizations on 
larger devices. For example, it is evident from the contributions that they focus on a single visuali-
zation, and regard any other visual elements as menus. This is not necessarily true. In fact, it seems 
that the WIMP interface provided by Drucker et al. actually provided more than one visual repre-
sentation of data. Aside from the bar chart (as reported by the authors), the WIMP interface showed 
a simple tree view to support filtering, which thus conveyed additional information about the data, 
as seen in Figure 2.2. 

Few contributions have aimed to provide touch interactions for multiple visualizations. Vlaming et 
al. [153] created touch interactions that emulated mouse interactions for VisLink [29]. An informal 
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user study suggested that participants did not perceive the provided touch interactions as emulating 
a mouse, but simply as touch interaction techniques. They also reported that participants used turn 
taking in interacting with the system instead of using it concurrently. Tobiaz et al. [143] also con-
tributed touch for multiple visualizations. However, their focus was on collaborative work with in-
formation visualizations on large displays, and less on the interaction techniques. I return to this 
contribution later in the chapter, in relation to large displays. 

2.1.4 Designing touch interaction techniques 
Most InfoVis contributions that focus on touch input use experts to design interaction techniques 
(e.g., [10, 38, 107, 120, 122, 123, 153, 155]). Frisch et al. [49] is a notable exception. This stands in 
contrast to work in HCI (e.g., [108, 145, 161]), where several contributions have sought to elicit in-
teraction techniques in user studies. In the InfoVis contributions described above, the authors have 
designed interaction techniques from design goals (e.g, [10]) or brainstorming with HCI practition-
ers (e.g., [36]). 

The predominant approach to designing touch interactions for visualizations appear to be to first 
identify a visualization technique, then identify tasks to support, and finally, to map these tasks to 
interaction techniques. Baur et al. [10] for example used this design approach. They first identified a 
list of low-level tasks to support (i.e., manipulate tasks such as select, arrange, navigate). Then, 
they compiled two lists: the first list comprised all visual components (single layers, stacked graphs, 
background); the second list comprised all basic interactions (tap, drag, two-finger drag, etc.). Fi-
nally, they created a mapping between the visual components, the basic interactions, and the manip-
ulation to occur. 

Two papers describe a somewhat different approach. In Kinetica, Rzeszotarski & Kittur [120] used 
a metaphor of physical kinetics to generate different designs, for example the sieve described above. 
The authors then designed interaction techniques based on these metaphors. They describe how de-
sign, implementation, and evaluation (by the authors) were interspersed, reminding of agile soft-
ware development. In TouchViz, Drucker et al. [36] first identified low-level manipulate tasks, sec-
ond brainstormed interaction techniques for these tasks in collaboration with HCI practitioners, and 
third organised these techniques (e.g., reduced three filter techniques to one). Finally, they decided 
on the visualization technique to support. 

Frisch et al. [48, 49] both relied on user participants in designing a set of interaction techniques for 
diagram editing, and later refined by experts (presumably the authors, does not specify). In refining 
the interaction techniques, the authors first stated goals for the refinement, primarily focused on 
keeping the value in the designs suggested by study participants. Secondly, they considered options 
to resolve conflicts in the user-elicited interaction techniques, which primarily were present because 
of lack of expressive power in the basic interactions. They considered to (a) add additional basic in-
teractions, (b) introduce mode switches, (c) distinguish between input modalities (pen or touch), and 
(d) distinguish between basic interactions performed on different visual components. Finally, they 
settled on introducing an interactive border around nodes in the diagram. 
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In summary, the literature have used different approaches in the design of touch interaction tech-
niques. Most commonly, experts have designed interaction techniques based on for example design 
goals and brainstorming sessions. In these situations, the design process been to: first, identify a vis-
ualization technique; second, identify tasks to support; and third, map these tasks to interaction 
techniques. Rzeszotarski & Kittur [120] and Drucker et al. [36] chose a slightly different approach. 
In contrast, Frisch et al. [48, 49] relied on a user study to design interaction techniques. Other visu-
alization research have also relied on user studies (e.g., [157]), but have not provided refined inter-
action techniques. These have instead focused on guidelines and design implications. 

Similar to the differences in design method, the tasks that researchers have aimed to support with 
touch interaction techniques have varied. I describe these variations in the next subsection. 

2.1.5 Visualization tasks supported by touch interactions 
In the previous sections, I described recent contributions in the area of touch interaction techniques 
for information visualizations. I will briefly discuss the range of supported visualization tasks in 
these based on Brehmer and Munzners’ “multi-level typology of abstract visualization tasks” [21]. 
This typology serves to both discuss the goals, as well the low-level interactions that the interaction 

Authors Why (design goal) Why (evaluation) How 

Sadana & 
Stasko [122] 

Consume (discover) ► 
Search (explore) 

No evaluation Manipulate (select, navigate, ar-
range, change, filter) 

Baur et al. [10] Consume (discover, 
enjoy) ► Search (ex-
plore) 

Consume (enjoy) ► Search (browse, ex-
plore) ► identify, compare  
(case data studies) 

Manipulate (select, navigate, ar-
range, filter, aggregate) 

Vlaming et al. 
[153] 

Consume (discover) ► 
Search (explore) 

Consume (discover) ► Search (lookup, 
browse, locate, explore) ► Query (identify, 
compare) 
(informal user study) 

Manipulate (select, navigate, ar-
range, change, filter) 

Drucker et al. 
[36] 

Consume (discover) ► 
Search (explore) 

Consume (discover) ► Search (browse, lo-
cate, explore) ► Query (identify, compare) 
(comparative user study) 

Manipulate (select, navigate, filter, 
aggregate) 

Rzeszotarski 
& Kittur [120] 

Consume (discover) ► 
Search (browse, ex-
plore) 

Consume (discover) ► Search (lookup, 
browse, locate, explore) ► Query (identify, 
compare, summarize) 
(comparative user study) 

Encode, manipulate (select, navigate, 
arrange, change, filter, aggregate) 

Dwyer, North 
et al. [38] 

Produce Produce 
(obs. study) 

Manipulate (select, arrange) 

North, Dwyer, 
et al. [107] 

Produce Produce 
(obs. study) 

Manipulate (select, arrange) 

Frisch et al. 
[49, 48] 

Produce Produce  
(gesture elicitation study) 

Manipulate (select, navigate arrange, 
change, filter) 

Schmidt et al. 
[123] 

Consume (discover) ► 
Search (explore) 

No evaluation Manipulate (primarily select) 

Voida et al. 
[155] 

Consume (discover) No evaluation Manipulate (navigate) 

Table 2.1: The why’s and how’s in Brehmer & Munzners’ typology of visualization tasks for InfoVis contributions 
that focus on interaction techniques. Note that many of the contributions use exploration in the meaning of dis-
cover in the typology. 
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techniques support. Table 2.1 provides an overview of the contributions and the visualization tasks 
they aim to support in terms of the typology. 

Seven of the papers stated an explicit goal of designing interaction techniques that support data ex-
ploration. For example, Rzeszotarski & Kittur [120] investigated “how post-WIMP interactions 
might improve exploratory data visualization”. Similarly, Sadana & Stasko [122] “identified a set of 
interactive tasks/operations that supported exploration with scatterplots”. Based on the contribu-
tions’ goals, I found that the typology’s word discover seem to map better to the goals stated. 
Therefore, I used this in Table 2.1. 

Many papers that introduce novel interaction techniques for visualizations aim for an enjoyable ex-
perience. They argue for these goals based on post-WIMP interaction techniques and fluidity (e.g., 
[40, 90, 115]). This is also the case in the papers described above. For example, Baur et al. [10] de-
scribe an implicit goal of providing an enjoyable visualization experience, by describing the popu-
larity and visual appeal of stacked area charts. For example, they refer to a New York Times’ visu-
alization, which used a stacked graph visualization to convey Movies’ box office receipts. 

I briefly described how research have considered visualization tasks in relation to touch interaction 
techniques. Interestingly, many of these contributions aim to support data exploration (e.g., [36, 
122]) and aim for an enjoyable experience (e.g., [10]). This overview have shown that there is focus 
on the tasks supported by these contributions. Next, I describe how the contributions have evaluated 
whether the designs support the tasks they aimed to support. 

2.1.6 Evaluations of touch interactions 
Some InfoVis contributions that focus on touch input have elicited interaction techniques in user 
studies ([38, 48, 49, 107]). However, only few have conducted user evaluations of the interaction 
techniques they proposed ([36, 120]). The low number and quality of evaluations of touch interac-
tion techniques is problematic. In Table 2.2, I provide an overview of the papers, their evaluation 
methodology, and the dataset used.  

Authors Evaluation type Dataset 

Sadana & Stasko [122] None Not described 

Baur et al. [10] Case data studies Two months of personal music listening history and 
box office results of 52 movies over 80 weeks 

Vlaming et al. [153] Informal user study No details (United Nations dataset) 

Drucker et al. [36] Comparative user study 4,248 and 16,798 rows (business operations) 

Rzeszotarski & Kittur [120] Comparative user study 73 rows (cereals), 133 rows (cars), 200 rows (people 
on board the Titanic) 

Dwyer, North et al. [38] None (observational study) 50 nodes, 75 links (no context) 

North, Dwyer, et al. [107] None (observational study) 200 coloured data points 

Frisch et al. [48, 49] None (gesture elicit. and refine studies) Not applicable (diagram editing) 

Schmidt et al. [123] None Not described 

Voida et al. [155] None Not described 

Table 2.2: contributions, evaluation methodology, and used dataset for papers that contribute touch interaction 
techniques. 
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Drucker et al. [36] aimed to study hedonic aspects of touch interaction techniques, stating a goal of 
understanding “whether, and how, the fluid, touch-based gesture interaction offers subjective or 
performance advantages over the current WIMP approach to data exploration on touch surfaces.” 
Subjective measures of ease of use, ease of learning, speed, and efficiency on a Likert scale were all 
higher for the FLUID condition than for the WIMP condition, and five participants volunteered that 
the FLUID interface was fun and engaging to use. However, Drucker et al. provided a poor match 
between the goal of the study (comparing WIMP and FLUID interactions), and the visualization 
tasks used in the study. In the study, participants were asked to solve locate and browse tasks, but 
not explore tasks. The tasks required participants to identify and, to some extent, compare infor-
mation, but not to summarize information (e.g., to describe a relation between two attributes) or to 
explore the data set, to look for interesting information. In contrast, Rzeszotarski & Kittur [120] 
asked participants in their study few locate and browse tasks, in trade for open-ended explore tasks 
when using Kinetica. For example, they asked participants to pick a car based on the participants’ 
own requirements, which they described before beginning the task. In a subsequent task, they asked 
participants to make as many findings in a dataset that contained a random sample of 200 passen-
gers on the Titanic. The participants made descriptive, comparative, and summative findings in the 
dataset, which underlined the use of the interaction techniques. 

A potential reason for the lack of user evaluation is that the advantages of touch input is still poorly 
understood, and our current methods of conducting evaluations are incapable of fully describing the 
perceived, but illusive benefits of touch interaction. Perhaps more contributions of touch interaction 
techniques for information visualization will include evaluations once the field is more established. 
Another explanation for the lack of user evaluations is that these types of evaluations are still some-
what rare in information visualization research [72]. 

The domains and datasets used in describing and evaluating the interaction techniques pose addi-
tional problems. First, the sizes of the used datasets are small, with the largest containing less than 
20,000 rows. While many real-word datasets that people need to analyse fit this limitation, many are 
much larger. It is unclear how changes to the scale of datasets have impact on the use of interaction 
and visualization techniques. This potentially reduces the external validity of evaluations of any 
type.  

The experience, knowledge, or work domain of participants may also play a role in user evalua-
tions. Drucker et al. [36] discussed how the Post-WIMP interface helped to guide participants with 
seemingly low experience with data analysis towards solving tasks, because the amount of possibili-
ties in configuring the bar chart visualization was low compared to the WIMP condition. In con-
trast, study participants with a more well founded analysis strategy seemed limited by the guiding 
provided in the Post-WIMP condition, and was more effective in the WIMP condition. This exem-
plifies the importance of the experience that participants bring with them to an experiment. For 
many evaluations, the experience have little importance. However, if domain experts will use a vis-
ualisation system, it is crucial to recruit participants from this domain, or with similar knowledge. 



Chapter 2: Overview of related work 

17 

2.1.7 Summary of touch interaction 
In the previous subsections, I have described contributions that studied touch interaction techniques 
for information visualizations. First, I described the benefits of direct manipulations for interacting 
with data points. Then, I gave an overview of papers that have contributed touch interaction tech-
niques. Finally, I described how these contributions have approached design, task support, and eval-
uation. 

In the next section, I briefly describe related work in using peoples’ movement to drive interaction. 

2.1.8 Use of peoples’ movement for interaction 
When people work in front of large displays, they might need to move to reach pertinent display ar-
eas. Additionally, interactive systems might react to peoples’ implicit or explicit movements, thus 
changing display content. An example of an explicit interaction technique is to zoom a map, when a 
person approaches a display. Similarly, an example of an implicit interaction technique is to change 
the state of a visualization, when a person walks past the display. A few studies has investigated in-
teraction with visualizations based on body movement, particularly in the context of large displays. 
Andrews et al. [2] provided an overview of potential interaction techniques for information visuali-
zations on large displays. 

A few interaction models exist that help understand and explore bodily interactions techniques. In 
addition to instrumental interaction, which I described and used in the previous sections, reality-
based interaction may be used to describe novel interaction techniques [73]. This model takes inspi-
ration from the real world to describe interaction techniques. Specifically, the model encompass na-
ïve physics, body awareness, environment awareness, and social awareness. Elmqvist et al. [40] 
suggested that reality-based interaction might provide fluid interactions for information visualiza-
tions. This, for example, promotes flow, support direct manipulation, and minimize the gulfs of ac-
tion [106]. Proxemics interaction is related to the model of reality-based interaction [73] and have 
been explored in [9, 97]. 

In this short overview, I focus on contributions that have considered full-body interaction in the 
form of body translation, rotation, display distance, and display orientation. These interaction forms 

                  
Figure 2.3: Interaction zones described by Vogel et al. [154] (left). Lens technique described by Lehmann et al. 
[93] (centre). Physical zoom-and-pan with tablet described by Rädle et al. [121] (right) 



Chapter 2: Overview of related work 

18 

have particular relevance for large displays, because it is necessary to move in front of large dis-
plays to reach pertinent display areas. Many studies have investigated how people move in front of 
large displays and how people use the available display space. I cover this focus in the next section 
(section 2.2). With this scope, I exclude techniques that do not consider whole-body movement 
such as “mid-air” hand and foot interaction techniques (e.g., [31, 103, 132]), chair-based interaction 
techniques (e.g., [33, 43]), body-centric interaction techniques (e.g., [133]), and interaction tech-
niques for virtual reality (e.g., [118]). 

Using people’s distance to a display as an input has been subject to the most studies. In an early 
contribution, Vogel & Balakrishnan [154] described four interaction phases that spanned implicit to 
explicit interaction: ambient display, implicit interaction, subtle interaction, and personal interaction 
(see Figure 2.3). In addition to distance, the authors also discuss and use orientation towards the dis-
play. While the authors described these proximity-based interactions in terms of an information vis-
ualization, they only partly directed their interactions towards the visualization. Specifically, the au-
thors note that participants moved laterally to adjust a detail time-line view. This form of interaction 
appeared easy to use for the study participants. Distance is also part of proxemics interaction [9, 
97], where it is divided in social zones. Here, the definition is derived from the sociologist Hall’s 
work [58]. In particular, Hall divided distances between people in four zones: public, social, per-
sonal, and intimate zones. 

Peck et al. [109] compared a novel interaction technique that mapped distance zones to target selec-
tion size on an large display to common interaction techniques. The authors asked study participants 
to solve a puzzle that involved swapping pieces at different hierarchical levels. The authors sug-
gested that their novel interaction technique might have resulted in more natural behavior from par-
ticipants in their study. When the participants used the novel interaction technique, they shifted less 
between the different hierarchies and seemed to use a more consistent strategy to solve the puzzle. 
The authors suggest this might indicate that the technique helped participants in obtaining and 
maintaining a better grasp of the task and data. 

Lehmann et al. [93] described two interaction techniques for graph visualizations on large displays 
based on discrete distance zones. One technique (zone) changed the globally displayed graph hierar-
chy level. Far away, only high-level nodes were displayed. Moving closer showed more details. The 
other technique (lens) also provided details based on zones. This however, offered focus+context 
interaction, by only providing details for the area covered by the users’ gaze (approximated by head 
tracking). A preliminary user study suggested that although the lens technique felt more interactive 
and “eye-catching”, the zone technique was perhaps easier to use. The authors reported that partici-
pants experienced unintended interactions, which were caused by minor head motions, and sug-
gested that adjusting the input filter might reduce these issues. In addition, they suggested to facili-
tate freezing the head tracking, for example to allow people to compare different nodes. 

Rädle et al. [121] compared two zoom and pan techniques for a memorization task inspired by the 
childrens’ card game Memory. A tablet provided a zoom and pan interface for navigating a virtual 
scene. A large display showed the entire scene physically with the tablets’ area emphasized, thus 



Chapter 2: Overview of related work 

19 

providing overview (the two devices potentially providing overview+detail). Only the tablet 
showed the content of memory cards, and only when zoomed in fully. In one technique (multi-touch 
condition), participants were stationed in a chair and used a tablet for navigating a virtual scene of 
cards to memorize. In the other technique (egocentric condition), participants were free to walk 
around. Here, zoom and pan was dependent on the tablet distance and lateral position relative to the 
display. Interestingly, participants self-reported significantly higher mental workload for the station-
ary condition. Rädle et al. also reported that participants moved less in the virtual scene in the ego-
centric condition. This suggests that participants had a better overview of the cards’ location in this 
condition. A limited experiment also showed long-term spatial memory benefits for the egocentric 
condition, and thus point to future work.  

Dostal et al. [34] showed collaborative distance- and orientation-based interactions, with a focus on 
tracking people using a cheap off-the-shelf RGB and depth camera. Their contribution relies in 
coarse tracking of people to detect interaction zones and orientation for interaction purposes as de-
scribed above.  

Isenberg et al. [67] demonstrated a novel method of passively showing different information de-
pending on display distance based on hybrid images. Even though the authors used a passive ap-
proach to vary visualizations based on distance, peoples’ perception actually did change according 
to distance. 

In this short overview, I described contributions that primarily considered peoples’ distance and ori-
entation to large displays. It is clear that these contributions have barely scratched the surface of the 
design possibilities. This description also concludes the overview of novel input and interaction 
technologies for information visualizations. Next, I describe information visualizations on large dis-
plays. 

2.2 Information visualizations and large displays 
There has been a tremendous proliferation in computing form factors. A decade ago, people primar-
ily used laptops or desktop computing devices to access the Internet. Now, people spend more time 
online with their smart phone than any other device [104]. In contrast, large displays have recently 
emerged in research and commercially (e.g., [169]). In the following sections, I primarily include 
work focusing on large displays for information visualizations. 

I distinguish between peoples’ use of space to make sense of data (e.g., [3]), which is driven by peo-
ples’ spatial organisation, and using space to show large data visualizations with spatial encodings 
(which most visualizations rely on), which is driven by visualization algorithms. The following con-
siders these two aspects separately. 
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2.2.1 Using space to make sense of data 
People use physical space to make sense of data both individually and in groups. For example, they 
lay out pages of documents to gain an overview, stack piles of related documents to enable easy re-
trieval of vast amounts of such, or fix pertinent information on walls. The following considers these 
aspects. 

Much of the early work on spatial management in HCI studied tabletop displays and focused on co-
located collaboration. Such studies looked at orientation (e.g., [85, 86]), territoriality (e.g., [125, 
124]) and different modes of collaboration (e.g., [69, 70, 141]). This work has identified implicit 
coordination mechanisms between collaborators and described how people divide work areas. 
Lately, larger displays and vertical displays have gained more attention. These displays have also 
been studied in collaborative contexts (e.g., [76]). Whereas these studies considered how people 
collaborate using space, other work has considered explicit support for collaboration with large or 

tabletop displays. Tobiasz et al. [143] integrated meta-visualizations in Lark to support coordination 

between collaborators. Hinrichs et al. [64] presented a user interface metaphor based on e.g., airport 
luggage carousels in interface currents. Isenberg & Fisher [68] presented Cambiera, which showed 
collaborators’ searches through brushing and linking on a tabletop display. Isenberg et al. [69] sub-
sequently evaluated Cambiera for sensemaking. Jakobsen & Hornbæk [76] adapted Cambiera to a 
large display and replicated the Cambiera study. Seifried et al. [128] suggested undo and redo tech-
niques for large displays that used peoples’ location as context for navigating the interaction his-
tory. 

Other work have studied the use of whiteboards in both individual and collaborative contexts, with-
out explicitly focusing on one or the other. These studies suggest that people use whiteboards for 
externalization of thoughts. Mynatt [101] reported how people used whiteboards to “get something 
out of [their] brain” and used it as a thinking device, in which the content of the board was only im-
portant after it had been drawn. She described how some people divided the space on whiteboards 
into storage and working spaces, in which people only removed content to make space for new con-
tent. Other people used a clean desk behaviour. Mynatt classified these as space scavenging and 
clean desk behaviours respectively. Similar findings were reported by Branham et al. [20]. Tang et 
al. [140] described people’s use of whiteboards as persistent storage areas for information related to 
future tasks, to transition between different collaborative modes. They further described how the 
physical context influenced the manner in which people use whiteboards and what they draw on 
them. Walny et al. [156] studied people’s use of visual representations on whiteboards to support 
thinking. The study showed people’s varied use of representations and linking on whiteboards, and 
suggested that whiteboards affords an immediacy that large displays do not offer. In addition to 
providing insights on people’s use of space, these studies showed the value in using whiteboards to 
inform designs of large display visualization and interaction techniques. 

Whiteboards have also inspired a range of pen and touch interactions. Browne et al. [22] showed 
SketchInsight, which provided data exploration through free-form and sketchy interactions. Walny 
et al. [157] studied the use of a version of SketchInsight in a Wizard-of-Oz study setup, to learn the 
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range of interactions that people would use naturally. Lee et al. [91] described SketchStory, which 
provided a medium for telling stories with data. Strokes on a large display was mapped to different 
visual representations of data, which could be prepared in advance.  

Other contributions have focused on individuals’ use of large displays for sensemaking. Andrews et 
al. [3] conducted a study in which participants used the “analyst’s workstation”, an 8-monitor 
10,240x3200 pixels desktop display, to solve the VAST 2006 contest problem [56, 111]. They de-
scribed study participants’ externalization of memory and use of spatial organisation strategies. For 
example, they observed the use of sorting piles, mapping documents’ date to a horizontal layout, 
and using lists and clusters. They described this as “space to think”. From the insights of this study, 
Andrews & North [4] designed the “Analyst’s Workspace”. This was tailored to large desktop dis-
plays such as the “Analyst’s Workstation”. The tool supported document annotations and links be-
tween named entities (extracted and manually annotated). Singh et al. [135] presented a  system that 
facilitated analysis of web logs on large displays. The system’s visual representations focused on 
the state and transformations applied to data, to support people in keeping track of analysis hypothe-
ses and conclusions. 

While large displays seem to help people in making sense of data and provides space to think, some 
information visualization systems use virtual space, which is navigated with pan and zoom tech-
niques (e.g., [37, 52, 80, 151]). Dunne et al. [37] used such an interface in GraphTrail, which sho-
wed links between visualizations that left a visual trail of data exploration. They observed that these 
links helped people to understand the actions that led to a visualization, recall the exploration his-
tory, and share analyses with others. Dunne et al. [37] reported that different analysts used different 
spatial arrangements, which carried meaning to them. However, understanding these arrangements 
required additional effort by their collaborators. In a parallel lab study, participants noted that the 
spatial organization of charts provided a useful overview, and aided in understanding related visual-
izations and branches in analysis. 

The use of physical space compared to virtual space to make sense of data was studied systemati-
cally by Andrews & North [5]. They based the study on tasks and data similar to their previous 
sensemaking studies described above, and used a between-subjects study design. Participants used 
either a 17” 1280x1024 pixels display or eight 30” monitors at a combined display resolution of 
10240x3200. Although the study did not show performance differences in the quality of findings 
(measured using the approach of Plaisant et al. [111]), it showed remarkable differences in how 
space was used across the two conditions. Most study participants assigned to the virtual condition 
did not organise the data spatially. One participant assigned to the virtual condition made an effort 
to organise data spatially. This participant made frequent mistakes. The authors argued that the need 
to access space virtually confounded him and impoverished his actual spatial sense. Further, that 
this might have been a deciding factor in this participant obtaining the lowest performance score. 
Most large display study participants organised data according to time, geography, or people, and 
created 75% more spatial structures. Additionally, these organisations were more complex. The par-
ticipants categorised documents after reading them, spent more time referring back to previously 
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read documents, and created more notes. However, the two groups of participants used different 
note-taking strategies. Where large display participants used notes to label documents and space, 
the small display participants used notes to synthesize their findings in narratives. 

2.2.2 Using space to show large data visualizations 
Visualization designers may use the space provided by large displays to show large visualizations. 
For example, the additional space afforded by large displays may be used to partition visualizations 
using composite visualization techniques [79]. North and colleagues studied this area in several ex-
periments. Yost et al. [166] explored the degree to which visualizations can be scaled while main-
taining user performance. Specifically, they compared a display-wide geographically based layout 
(space-centric) to a layout based on an attribute table (attribute-centric). In a follow-up experiment, 
Yost et al. [165] explored the effects of scaling visualizations to the point of, and beyond, visual 
acuity. Results of the experiments suggested that large displays increase people’s efficiency and ac-
curacy and that the geographically based layout, particularly on large displays, was superior for 
many tasks. Shupp et al. [134] studied the role of display space and curvature with a range of tasks 
on geospatial and demographic data. They found improved performance with large and in particular 
large curved displays, which is likely to stem from the fact that people could move between dis-
plays by rotating, rather than translating movements. Additionally, they suggested that because the 
display was flat, participants could step back from the display and visually aggregate the data. This 
influenced participants’ initial insights, which were more at the overview level, for example evi-
denced by their observations of global trends and patterns. 

Jakobsen & Hornbæk [75, 74] studied the role of display space and information space in two ex-
periments with similar tasks as North and colleagues. The experiments compared three interactive 
visualization techniques for multi-scale navigation: focus plus context, overview plus detail, and 
zoom and pan, across three display sizes, and information spaces fixed or relative to the display 
sizes. In contrast to other work, their controlled experiments showed no significant performance 
benefits from large displays. They noted that their choice of tasks influenced the results, for exam-
ple, by targets being visible irrespective of zoom level, by requiring interaction with display targets, 
and by not requiring wide use of information at multiple levels of scale to solve tasks. Liu et al. [95] 
compared classification tasks using pan-and-zoom interaction on a desktop-size display to physical 
navigation in front of a large display. Their results suggested that desktop-size displays are faster 
than large displays for simple tasks, while large displays benefits more difficult tasks. Reda et al. 
[112] studied visual exploration tasks for two large displays sizes. Their results suggested that peo-
ple generate more hypotheses and observations with larger displays. Ruddle et al. [117] studied vis-
ual search across three display sizes ranging from 20 to 129 inches. While the largest display 
showed the entire information space, the smaller displays required participants to pan. Their results 
suggest benefits from large displays to show entire information spaces, but note that many tasks that 
do not fit this limitation. 
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2.2.3 Using space as part of regular office work 
Some studies have identified benefits to using large displays for office work (e.g., [17, 30]). While 
such work is interesting, the findings and implications from it is of limited interest in considering 
large display work for specific applications of information visualization. 

2.2.4 Large displays and physical movement 
Several studies have considered how people move and navigate physically in front of large displays 
(e.g., [8, 9, 16, 42, 67]). Ball et al. [8] showed performance improvements of physical navigation 
over virtual navigation in front of a large display, and attributed the benefits to the directness of the 
physical navigation. Their work is supported by Liu et al. [95]. While these studies suggest that 
physical movement in front of large displays can be beneficial, the exact reasons remain unclear. 
Further increasing the complexity, Jakobsen & Hornbæk [77] showed no benefits of physical navi-
gation when they experimentally controlled participants’ movement. 

Other studies have considered people’s position in front of large displays. For example, Endert et al. 
[42] and Bezerianos & Isenberg [16] studied peoples’ perception of visual encodings in front of 
large displays. 

2.2.5 Summary 
In the previous subsections, I have described contributions that studied information visualizations 
on large displays. First, people can use the space provided by large displays to organise and navi-
gate large data sets. Studies have suggested this improves peoples’ ability to manage information 
and supports thinking [3]. Secondly, visualization designers can use the space provided by large dis-
plays to show large visualizations with spatial subdivision (e.g., based on composite visualization 
techniques [79]). Additionally, large displays enable people to use physical navigation which might 
be beneficial [8]. 

These contributions have shown benefits of using large displays for a range of applications. In the 
next section, I outline questions relating to interaction with information visualizations on large dis-
plays, which related work have not addressed. 
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2.3 What is it that we still do not know? 
In the previous sections, I have outlined work that studied novel input technologies (e.g., [107]), in-
teraction techniques (e.g., [10, 154]), and large displays (e.g., [8]) for working with information vis-
ualizations. 

From this overview, it is clear that there are many open questions and possibilities for combinations 
of these. Much research on large displays have dealt with how users can interact with large displays, 
and proposed and evaluated interaction techniques (e.g., [68, 143, 157]). Less work has considered 
support for complex data analysis. Some studies have helped to advance our understanding of how 
single (e.g., [3]) or multiple users (e.g., [19, 76]) benefit from large displays in data analysis tasks. 
However, they have rarely identified new visualization or interaction techniques for using space to 
think. 

Although recent studies have helped to understand complex data analysis tasks with large displays, 
we know little about how to support data analysis beyond efficient pointing and window manipula-
tion techniques. It is unclear how abundant display space can support data analysis tasks in general. 
Moreover, we lack visualization and interaction techniques that help users benefit from large dis-
plays when analysing large amounts of data. 

This raises several questions. For example: 

 How might abundant display space support exploration of large data sets? 

 How might abundant display space be used to reason about alternatives? 

 Can we design interaction techniques for abundant display space that support analysts in 
data exploration and hypotheses testing? 

 How might we tailor interaction techniques to abundant display space, and thus leverage the 
affordances they provide? 

The next part of this thesis describes the four papers that comprise my thesis work. I devote a chap-
ter for each paper. The papers aimed, in different ways, to answer the questions outlined above. Af-
ter describing the four papers in Part II, I end the thesis in Part III, which comprise Chapter 8 and 9. 
In Chapter 8, I discuss the methodology and findings of my thesis, before concluding the thesis in 
Chapter 9.
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Contributions  



 

 

 



 

 

 

Chapter 3 
Overview of contributions 
My thesis work and contributions concern information visualizations on large displays driven by 
novel interaction techniques. In the following chapters that comprise Part II of the thesis, I describe 
my contributions to the HCI and InfoVis fields based on four papers. 

The central research question has been: 
 

 

How may abundant display space support visualization-based data analysis? 

 

 

In my contributions, this question has been approached from different positions. I have devoted a 
chapter to present each paper individually and to outline how it contributes to answer the central re-
search question. Figure 3.1 shows how the studies described in the next chapters were inspired by 
the previous studies. I leave discussions and conclusions of the individual contributions to the final 
chapters of the thesis in Part III. 

In Chapter 4, I describe a study with many groups of domain experts. In the study, we ask the 
domain experts to imagine working with their tasks and data on a large display, simulated by a 
whiteboard. From a synthesis of observations from the workshops, the study identifies six 
dimensions to consider in designing analysis tools for large displays: persistency, transience, 
juxtaposing, trail of thoughts, movement, and gestures. These dimensions work as inspiration for 
the following chapters of the thesis, and thus suggests potential ways in which abundant display 
might support visualization-based data analysis. 



Chapter 4: Paper I 

28 

In Chapter 5, I describe three formative studies of the movement dimension. This dimension 
(unsurprisingly) relates to movement in front of large displays, and thus concerns analysis with 
abundant display space. The studies described in this chapter explore the dimension in more depth 
by developing designs that map the InfoVis task and proxemics interaction frameworks. With 
abundant display space, it is necessary to provide techniques that, for example, allow visualizations 
to follow people where they move. Thus, proxemics are relevant to consider in relation to abundant 
display space. I conclude the chapter with findings from the studies synthesised across the three 
studies. 

In Chapter 6, I describe a specific domain of analysis and contribute interaction techniques for 
working with large multidimensional data sets on large displays in this domain. The work is based 
primarily on the transience and trail of thoughts dimensions, both of which I describe in Chapter 4. 
The interaction techniques are implemented in a system, F3. I conclude the chapter with 
descriptions and findings from empirical studies of F3, which we deploy within the specific domain 
of analysis in one of the studies. Chapter 6 thus works to show specific ways in which visualization-
based data analysis might be performed with abundant display space, by designing and evaluating 
specific interaction techniques for working with multiple views and abundant display space. 

In Chapter 7, I describe a lab study on view relations with visualization and interaction design 
experts. This work is based primarily on how participants in the study described in Chapter 4 had 
shown visualizations’ relations with trails of thoughts and the process of designing F3, which is 
described in Chapter 6. Specifically, I observed participants confusion in a small informal lab study 
of an initial version of F3, that did not show relations. In the study, which I describe in Chapter 7, 
we ask the participants to work with, discuss and sketch representations of view relations. Our re-
sults, together with existing research, form the basis of a six dimensional framework that expands 
the range of possibilities of view relation representations. By contributing this framework, Chapter 
7 thus shows the wealth of techniques that might be used with many views and abundant display 
space. In this manner, the chapter thereby suggests the many alternative ways that visualizations 
might be used with abundant display space.  

In the following, I use the term “we” to refer to work that was conducted collaboratively as part of 
studies. Likewise, I use the term “I” to provide descriptions of work prior to any collaborations, to 

 

Figure 3.1: Overview of individual contributions. 
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provide additional explanations compared to submitted research papers, and when providing meta-
language to guide the reader in reading the text. 

 

 



 

 



 

 

 

Chapter 4 
Paper I 
An Exploratory Study of How Abundant Display Space May Sup-
port Data Analysis 
S. Knudsen, M. R. Jakobsen & K. Hornbæk 

Abstract – Large, high-resolution displays offer new opportunities for visualizing and in-
teracting with data. However, interaction techniques for such displays mostly support win-
dow manipulation and pointing, ignoring many activities involved in data analysis. We re-
port on 11 workshops with data analysts from various fields, including artistic photography, 
phone log analysis, astrophysics, and health care policy. Analysts were asked to walk 
through recent tasks using actual data on a large whiteboard, imagining it to be a large dis-
play. From the resulting comments and a video analysis of behaviour in the workshops, we 
generate ideas for new interaction techniques for large displays. These ideas include sup-
porting sequences of visualizations with backtracking and fluid exploration of alternatives; 
using distance to the display to change visualizations; and fixing variables and data sets on 
the display or relative to the user. 

My contributions to Paper I 
I devised the study design supervised by last author and my supervisor, Professor Kasper 
Hornbæk. 

I carried the main responsibility of collecting data through recruiting participants, inter-
viewing participants, organising the workshops, and analysing the collected data. These are 
all described in this chapter. 

I wrote all parts of the manuscript except for related work and discussion, which I contrib-
uted revisions to. 
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In the first paper of the four papers that comprise my thesis work, we sought to explore the research 
question by inquiring into many data analysis disciplines. Doing so, we wanted to find specificities 
in individual disciplines that were generalizable across disciplines, in a concrete, real-world man-
ner. We approached the problem in a naïve and technology-less way, where we asked analysts that 
participated in workshops to imagine doing their analysis tasks, given abundant display space. In 
reality, they were using a whiteboard. The approach was naïve in that no framing of the problem 
had been defined, except for a wish to understand the implications of abundant display space for 
data analysis. This with the intent of walking into the problem with a so-called clean slate [139]. 
Similarly, the approach used no modern technologies during the workshops, for arguments similar 
to lo-fi prototyping (e.g., [113, 116, 136]). However, workshop participants used the technology 
they were comfortable with to prepare tasks and data in printed form. Participants brought these 
tasks and data to the workshops to keep it grounded in concrete work. 

4.1 Methodology 
We conducted eleven workshops with small groups of 2 to 3 data analysts from diverse fields, in-
cluding artistic photography, phone log analysis, astrophysics, and public health care analysis. Data 
analysts were taken to mean people that perform tasks that has been classified as data analysis tasks 
[100] as a regular part of their work. The top of Table 4.1 provides an overview of the study and the 
applied methods. I repeat this table structure across the studies described in this thesis. The bottom 
of Table 4.1 shows the individual workshops. 

We designed the study to learn about diverse ways of conducting data analysis in a broad range of 
domains, and thus comprising a broad range of data, tasks, and methodologies. We chose to conduct 
a workshop study because we wanted to observe real, hands-on analysis work, carried out on what 
participants would think of as a large interactive display. The key part of the workshop was to make 
participants imagine a whiteboard to be a large display and then redo their own tasks on the imagi-
nary display. This approach offered several benefits. First, the approach was more general than indi-
vidual studies of data analysis. Second, the approach was grounded in concrete data analysis tasks, 
rather than trying to develop general models of analysis activity and derive design implications 
from them. Third, the approach offered a sweet spot between contextual studies and generalizabil-
ity. Fourth, while many methods rely on being present in-situ while work is being conducted, the 
workshops allowed participants to imagine working with tasks that spanned extended periods of 
time. 

In the workshops, the analysts worked with tasks and data that they brought to the workshop in 
printed form. A 6 by 1.3 meters whiteboard mimicked a large display. Workshops lasted approxi-
mately 2 hours and most covered two tasks. We began working with a task by asking participants to 
fix the printed data to the whiteboard using magnets as a starting point for imagining working with 
the concrete tasks. Then, a member of the group explained the task. After the explanation, the group 
were encouraged to discuss the task more freely and to imagine to solve it using abundant display 
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space. We probed the workshop participants with questions inspired by; (1) information visualiza-
tion taxonomies [25, 129, 164]; (2) the possibilities enabled by large displays and how participants 
would use them; and (3) the tasks brought to the workshop. 

The eleven workshops were video recorded. These videos contributed the main part of data collec-
tion, and were analysed using a grounded theory approach [139], which resulted in the themes de-
scribed next. 

Table 4.1. Overview of study methods, characteristics of participants’ domains and data analysis tasks.  
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4.2 Results, Findings, and implications 
In the following, I give an overview of six themes. Paper I described some of these themes with a 
different name. I italicise this name in the text. These were the result of analysing the study data. 
The themes relate to various aspects of abundant display space. When describing how participants 
imagined the whiteboard as a display, I simply describe it as a display. 

4.2.1 Persistency 
Persistency related to setting aside space for one purpose and thus keeping some information visible 
in a fixed position for an indefinite time. One might for example imagine an overview visualization 
or a table of raw data displayed in a specific spot throughout an analysis session, a day, a week, or 
perhaps an entire project. 

In workshop F, participants considered methods for allocating containers on shipping vessels. They 
imagined displaying a persistent overview of the load of an entire vessel, while they imagined 
smaller menus to follow the user while interacting. In workshop J, where participants considered 
analysis of photographs, they imagined using the left part of the display to show thumbnails of pho-
tographs throughout an analysis session. In workshop D, participants considered analysis of cell 
phone subscribers’ use of smartphones. A participant reserved the top part of the display for simple 
data representations (e.g., histograms) of variables preselected among all variables in the system 
(for example gender, age, and smartphone model). These representations could be used to modify 
data representations in a working area in the central region of the display. 

In contrast to persistent use of space, many participants imagined working areas, which users would 
modify while working with data. This is similar to other studies’ (e.g., [124]) description of space 
division on tabletops. Working areas were kept in persistent locations. This was clear in several 
workshops. In other workshops, while the working area was persistent, this idea was not considered 
by participants. 

The concept of persistency is relevant to the principal research question. With abundant display 
space, participants imagined that setting aside space for a single purpose for an extended amount of 
time, would make sense and be useful. This extends the notion of storage space as defined in related 
work. This finding also fits squarely with Mynatt’s report of whiteboard use [101] (i.e., some white-
board users had a known hot spot, where material changed frequently, which was bordered by more 
persistent content). 

4.2.2 Transience 
Transience related to temporarily using space to spread out data. For example, to use abundant 
space to show large menus with rich visualization temporarily. This might facilitate navigation of 
large information spaces by way of transient menus that show detailed information for each item in 
the menu. For example, to filter a visualization, that visualization might be displayed in different 
value groups of a data variable, similar to the small multiples visualization technique [147]. From 
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this menu, users might select the specific filter group. This can potentially result in many visualiza-
tions to choose from, which may temporarily take up a large display area. 

In workshop J, participants worked with artistic photography. They imagined transiently spreading 
photography tags across six meters of the display, to tag photos, after which the display would col-
lapse the spread. The tags would be shown by one or more previously assigned representative pho-
tographs. In another workshop, participants imagined using transient overviews as an entry point to 
data. They imagined temporarily seeing an overview table with results of many simulations from an 
information retrieval study, and then go into detail, instead of having to go through the results one 
by one. 

This use of space is in contrast to the previous theme, in terms of both the duration of time that 
abundant space is used, and in the application of the abundant space. The use of space is transient 
and may be applied to quickly select or modify data in short-lived visual representations of data, be-
fore moving on to something else. 

The concept of transience is relevant to the principal research question. With abundant display 
space, participants imagined that using large amounts of space for very transient things such as 
menus, would enable them to quickly get to what they needed, with rich visual representations sup-
porting their goal at hand. This is in contrast for example to menus that in many systems are primar-
ily text based and takes up a relatively small part of a display. 

4.2.3 Juxtaposing 
Juxtaposing or in Paper I, showing data side-by-side or one-by-one, related to showing visualiza-
tions across time or space. Participants considered seeing versions of visualizations next to each 
other or alternatively seeing a single visualization transitioning from one version to the other. For 
example, seeing two bar charts next to each other that encode the same variables for different data 
can facilitate comparison. Incidentally, transitioning back and forth between the same bar charts, 
might also facilitate comparison. 

For example, in workshop E, participants considered how to compare visual properties of images of 
two galaxies. They compared grayscale images, processed images, and image feature-plots of the 
galaxies spatially by aligning the galaxy images one above the other. In workshop I, participants 
imagined comparing sets of data by transitioning back and forth between them to view page ranks 
for different information retrieval algorithms, which they preferred over viewing data sets next to 
each other. They argued this would allow them to see how different pages moved from one algo-
rithm to the other. 

These contrasting ways of seeing versions of a data set was considered mainly in two ways: (1) to 
compare different version of a data set (as described above), and (2) to drill down in data by filter-
ing on variables and segregating data. I describe this next. 

In workshop C, where participants considered how to analyze cost structures in Danish hospitals, 
they used a stacked bar chart of costs of related diagnoses at individual hospitals. The participants 
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imagined that selecting a bar would open another visualization next to the stacked bar chart, that 
would show more details for the selected bar. In this style, more detailed representations of data was 
shown next to a sort of overview, thus using space multiplexing. In workshop D, participants con-
sidered analysis of smartphone usage logs. They imagined the display to show a centered working 
area that would show a line chart of smartphone usage over a 24-hour period. They imagined to 
drag variables onto this data plot and thereby let the variables act as filters for the data shown. In 
this style, more filtered representations of data was obtained in the same area as the original view, 
thus using time multiplexing. This use of space primarily considered the use of a working area. It 
should be noted that the two alternatives are not mutually exclusive. In fact, interactive systems 
should probably support both working styles in a fluent manner. 

Considering visualization juxtaposition is relevant to the principal research question. It is questiona-
ble whether space should always be used in comparing data sets given abundant display space. For 
example, comparing a bar chart filtered with a binary dimension might give much better impression 
of the relative differences between the two values. Likewise, seeing transitions in a time-varying 
scatterplot by interacting with a time slider helps users to follow the movement of individual points. 
In contrast, using small multiples to convey the same information would require the use of another 
visual variable (e.g., colour) to identify data points across visualizations. 

4.2.4 Trail of thoughts 
Trail of thoughts related to using abundant display space to show analysis provenance. The theme 
concerned capturing the history of data analyses by keeping records of interaction. Systems might 
use these records to represent the analysis provenance with visualizations. Participants considered 
the value of being able to see earlier steps of analysis by having these steps represented visually; 
participants also referred back to and used representations of such steps in the workshops. In some 
workshops, visualizations were connected using lines, thus providing a meta-visualization that rep-
resented flow of data. In other workshops, snapshots of the display state were shown in miniature 
version in a horizontal line at the bottom of the display. 

In workshop G, participants were concerned with analysis of internet game statistics. They drew 
steps of data processing as vertices and the order of processing as edges. The participants explained 
that it was useful to have an overview of how data were processed and to be able to return to earlier 
analysis steps. Results from individual vertices could be represented using histograms or other rep-
resentations. We had a related observation in workshop C, where the participants were concerned 
with analysis of health care cost distributions (also described in previous section). Here the steps 
were represented directly by visual representations of results instead of by vertices. Participants im-
agined that selecting a data point in a visualization would show a visualization with details about 
the data point. The data point would additionally be connected to the detail visualization using a 
line. Participants further imagined that this process could continue deeper into the data, thus reveal-
ing a “trail of thoughts”. In workshop G, participants discussed how to annotate important findings 
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while analysing data, to be able to summarize insights at the end of an analysis session. They imag-
ined a space-time capture of the analysis progress displayed in a horizontal line at the bottom of the 
display. Nearing the end of an analysis session, they imagined how they would go through the anal-
ysis to summarize their insights and open questions. 

This use of space is different from the previous themes. The previous themes primarily related to 
the reduced necessity of space management. In contrast, this theme suggests novel approaches for 
using abundant display space, which may lead to new possibilities. In addition, where the other 
themes appear to be quite simple and uncomplicated, it appears as if the workshop study only 
scratched the surface of how to provide analysis provenance and meta-visualizations. 

Considering how space may be used to provide a provenance trail is relevant to the principal re-
search question. Thus, in contrast to the other themes that seem relatively well understood, this 
theme opens up more questions than it answers. 

4.2.5 Movement 
Movement related to people’s movement in front of and distance to the display. The size of the dis-
play seemed to cause participants to move around in front of the display, and moving back and forth 
in front of it. Moving away from the display seemed to allow participants to obtain an overview. 
Moving closer seemed to facilitate seeing details. When participants moved in front of the display, 
they did so to get closer to data or views of interest, to move out of other participants’ view, to 
gather an overview, or to point to something on the display. 

Participants moved to and from the display in most workshops. In a workshop J in which partici-
pants imagined how to lay out photos for an artistic photography exhibition, participants moved 
close to the display to look at details in specific photographs and quickly back again to position this 
detail in their overview. A participant said: “I can construct an overview of the photographs; I can 
see what’s on the photographs while still being able look at the entire overview”. In this workshop, 
it was important to present data (i.e., photographs) to outsiders. The sequence of first standing away 
from the display and thinking, then walking up close to interact with the display and then slowly 
backing up, as if to make sure things were as expected, was seen in all but three workshops. It was 
however, most visible in the photography workshop, where three positions in relation to the display 
were observed: Interacting or looking at the display (close); with the back turned to the display and 
interacting with other participants (middle); and away from the display facing it (far). Sorting the 
grabbed images into these categories showed that participants in this workshop spent an equal 
amount of time in all three positions. 

Some participants took micro steps when working in front of the display. In workshop E, where par-
ticipants imagined conducting analyses of galaxy images, a participant stepped half a step back-
wards to get distance from the display and to get an overview. Another variant of movement relates 
to small movements with both feet on the ground. We observed this in a workshop B where partici-
pants considered how to analyse website statistics. A participant that worked on a task in one area 
of the display needed to look at data placed in another area. To be able to see data located far away 
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at the display, he leaned backwards, thus getting an improved field of view to the distant display 
area, while holding onto the data in front of him. 

The ways that participants moved relates to using abundant display space, but in a different manner 
compared to the previous themes. When there is a lot of space, it might be necessary to look at data 
located far away. Likewise, moving away from the display helps to overview data, similarly to vir-
tual navigation. It is possible to use both of these types of movement to direct implicit interaction. 
For example, micro steps might initiate a zoom mode that scales up the gaze area. Likewise, walk-
ing away from a display might enhance the physical navigation with virtual scaling. 

4.2.6 Gestures 
Gestures related to the types of gestural interactions that participants imagined or performed on or 
in front of the display, which related to abundant display space. Thus, we did not code gestures that 
participants used to communicate with other people, due to the frequency in the study and our focus 
of the analysis. The behaviour that we analysed was for example when participants dragged things 
on the display, waved their hands in front of the display, or talked about interacting with the display 
by pointing. 

We observed 172 gestures that matched the described behaviour. These gestures were grouped in 
three categories according to their type: (a) on-screen (9 workshops, 44 gestures); (b) in front of 
screen (8 workshops, 43 gestures); and (c) in-air gestures (10 workshops, 85 gestures). Previous 
work have described most of these gestures. For example, we coded 46 instances of sync- or asyn-
chronous bimanual interactions. A group of behaviour that surprised us was the use of very large 
gestures. We saw 13 large gestures across six different workshops, and considered the size of the 
gestures to relate to display space. In a workshop J where participants considered how to arrange 
photographs for an arts exhibition, the participants talked about changing overall states of the dis-
play. In this context, a participant imagined dragging an image view that spanned the height of the 
displaying from one end of the display to the other (six meters) to re-arrange the layout. Later in the 
workshop, another participant imagined to use a gesture to move a view to his current position in 
front of the display. 

The observation of interaction techniques that spanned several meters surprised us and seemed in-
teresting to pursue. We imagined that most people would feel awkward performing what looks 
more like dance movements than “serious work”. The existence of what I have described as large 
gestures indicates that a dimension of gestures relate to their size. Additionally, there might be a re-
lation between display size and gesture size. If such a relation exists, then large gestures for small 
devices might not be useful. Vice versa, small gestures for large displays might not be useful. 

Thus with abundant display space, the size of gestures may also be very large, and potentially re-
quire collaboration between people. 
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4.3 Summary and conclusion 
In this chapter, I described six themes that occurred across a varied range of data analysis domains. 
The themes inspired the papers that I describe in the next chapters. The themes’ inspiration for the 
papers was: 

 Persistency 

 Transience / space to spread out data (Paper III) 

 Juxtaposing / showing data side-by-side or one-by-one (Paper III and IV) 

 Trail of thoughts (Paper III and IV) 

 Movement (Paper II) 

 Gestures (Paper III) 

 



 

 



 

 

 

Chapter 5 
Paper II 
Information Visualization and Proxemics:  
Design Opportunities and Empirical Findings 
M. R. Jakobsen, Y. S. Haile, S. Knudsen & K. Hornbæk 

Abstract – People typically interact with information visualizations using a mouse. Their 
physical movement, orientation, and distance to visualizations are rarely used as input. We 
explore how to use such spatial relations among people and visualizations (i.e., proxemics) 
to drive interaction with visualizations, focusing here on the spatial relations between a sin-
gle user and visualizations on a large display. We implement interaction techniques that 
zoom and pan, query and relate, and adapt visualizations based on tracking of users’ posi-
tion in relation to a large high-resolution display. Alternative prototypes are tested in three 
user studies and compared with baseline conditions that use a mouse. Our aim is to gain 
empirical data on the usefulness of a range of design possibilities and to generate more 
ideas. Among other things, the results show promise for changing zoom level or visual rep-
resentation with the user’s physical distance to a large display. We discuss possible benefits 
and potential issues to avoid when designing information visualizations that use proxemics. 

My contributions to Paper II 
I took part in identifying the possibilities within the design space of information visualiza-
tions and proxemics, and was the main force in developing design #3 described in this 
chapter. This included UI design, software development, and evaluation. 

I took part in the evaluation of all three designs and in the subsequent analysis of these de-
signs, which are described as study #1 to #3 in this chapter. 

I wrote the first draft of the section describing study #3. In addition, I contributed revisions 
to other sections of the paper. Additionally, I was solely responsible for creating the video 
that formed part of the submission. 
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In the second paper, related HCI literature and participants’ movement in the first study inspired us, 
to understand how users’ distance and orientation to large displays might be used to interact with 
information visualizations. We wanted to understand the possibilities of considering body move-
ment as explicit interactions with visualizations. Our aim was to generate design ideas, and to ob-
tain initial data on the usefulness of combining movement with information visualizations. 

To do this, we explored the possible combinations of distance and orientation on one side, and peo-
ples’ need to perform low-level visualization tasks on the other side. We identified proxemics inter-
action [97] as a starting point for exploring the design space of combining primarily the distance 
and orientation dimensions from this framework with information visualizations. Likewise, to struc-
ture our support for interaction with information visualizations, we chose to base our further work 
on Heer & Shneiderman’s taxonomy of visualization tasks [61]. 

We gave a thorough description of the design space covered by the combinations of these frame-
works (i.e., [61, 97]) and described related work in terms of this design space.  

We implemented three variations over these possibilities, and evaluated each variation in a forma-
tive lab study with six participants in sessions of approximately an hour per participant. The lab 
studies were based on two to three conditions that compared the novel interaction techniques to 
mouse-based interaction techniques. We interviewed participants to learn about their experiences 
and thoughts about the novel interaction techniques. After conducting the six sessions, we analysed 
the interview notes based on the instant data analysis technique [84]. We compiled the results of 
these analyses, which then formed the basis of the paper’s empirical data. Table 5.1 provides an 
overview of the methods used in the studies. 

 

5.1 Designs 
The three designs focused on distance and orientation of a single user interacting with a single visu-
alization on a large display. In the evaluation, we compared all three designs to a baseline interface 
condition using mouse input. I will not describe the mouse interface in detail, since it was primarily 
included as a comparative condition in the evaluation. We chose this approach, because previous 
work has suggested that participants generate more comments, when they are able to compare alter-
natives [144]. I give a brief description of each design in the following.  

Table 5.1: Overview of study methods. 
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5.1.1 Design #1 
The first design used a zoom+pan interface for navigating geographical maps. We designed two in-
terfaces based on proxemics interaction. 

The first movement based interface (absolute) used a direct mapping between physical movement 
and movement of the map. Moving toward the display zoomed in and moving away from the dis-
play zoomed out; see Figure 5.1 (a to c). Zooming was centred based on head orientation, which we 
indicated by a crosshair shown on the display. Lateral movement controlled horizontal panning: 
Moving left caused the map to move right; moving right caused the map to move left. We used head 
orientation for panning up and down by pitching the cap such that the crosshair would approach the 
top or bottom of the display. Panning in both dimensions happened at a fixed rate. 

In the second movement based interface (relative), moving relative to a 75cm by 75cm rectangular 
region in the centre of the floor controlled zoom and pan; see Figure 5.1 (d to f). Being physically 
left of the region caused the map to move right; and being physically right of the region caused the 
map to move left. Similarly, stepping toward the display from the region caused the map to zoom 
in; and stepping backward from the region caused the map to zoom out. The zoom rate was in-
versely proportional to the zoom level such that when zoomed in to a detailed level, the zoom rate 
was lower. Moving further away from the region did not affect zoom rate. The use of head orienta-
tion for zooming and for vertical panning was similar to Absolute. 

Absolute Relative 

      
(a) (b) (c) (d) (e) (f) 

Figure 5.1: Zooming in the two interfaces that use proxemics in Design #1. In Absolute (a-c), the zoom level in-
creases as long as the user keeps moving toward the display, and stops zooming when the user stands still. In 
Relative (d-f), the zoom level increases at a constant rate, as long as the user is within the zoom zone (e). Zoom-
ing is centered on a crosshair, which indicates the point where the ray cast from the user’s head intersects the 
display. 
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5.1.2 Design #2 
The second design adapted a visualization using semantic zoom of a colour-encoded map based on 
physical distance and orientation. We designed one interface based on proxemics interaction.  

The distance- and orientation-based interface varied the level of visual aggregation of data attributes 
based on distance and provided details based on head orientation. First, we used a diverging colour 
scale to indicate to which degree the value of an areas’ attribute was above or below the mean value 
for that attribute. At less than 75cm from the display, individual homes were shown as points. With 
increased distance, the representation changed to show data aggregated on geographic areas (75cm: 
Danish postal districts; 125cm: Danish municipalities, 98 municipalities in total; 175cm: Danish re-
gions, 5 regions in total), and used larger font sizes. Transitions between representations used alpha 
blending over a 20cm distance range. Second, we used movement-based Excentric Labelling [45] to 
give details about homes within a selection box that followed physical position horizontally and 
moved vertically with the pitch of the user’s head. Third, we used multi-scale interaction [109] to 
control the size of the selection box. It grew in size with increasing distance and showed details for 
data at higher scales: homes, districts, or municipalities. Fourth, we used movement-based change 
of colour encoding. When more than 250cm from the display, the attribute menu (which was shown 
in the top-centre area of the display) responded to lateral movement: Moving left or right caused an 
indicator to move to another attribute that would be used for colour encoding.  

5.1.3 Design #3 
The last study investigated the use of distance for selecting attributes, filtering, and brushing and 
linking multivariate data. We designed one interface based on proxemics interaction. 

The distance-based interface displayed data in multiple coordinated views. The interface comprised 
a window that contained nine scatterplots and a data table, a view that showed a histogram for a sin-
gle attribute, and a view that allowed for selection between nine attributes in a list. When selecting 
an attribute from the list, the histogram for that attribute was shown and the data table was sorted by 

 

(a) Aggregate, municipalities 

 

(b) Aggregate, postal districts 

 

(c) Individual homes 

Figure 5.2: Techniques used in Design #2. (a) and (b) Distance-dependent aggregation of real-estate data by 
geographic area; and details on demand for geographic areas. (c) shows real-estate data for individual homes 
with data points; and details on demand for individual homes. 
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that attribute. For visualizing the histogram, the values of most attributes were binned to produce 10 
bars. For attributes with less than 30 values, each value had its own bar. Users could select histo-
gram bars. This would filter the table view to show only the corresponding data points and mark 
corresponding data points in the scatterplots red. 

The attributes in the list mapped to discrete distance zones from the display; 100cm (the first attrib-
ute) to 250cm (the last attribute) from the display. An attribute was selected by moving closer or 
farther from the display, shown in Figure 5.3 (b to c). In the attribute list, a circle indicated the 
physical position relative to the attribute zones. Hysteresis tolerance was used for transitions be-
tween the zones of two variables: Entering and exiting a zone was facilitated at separate distances, 
with the intention to avoid unintentional switching back and forth between two attributes. Sideways 
movement caused brushing over bars in the histogram: Lateral position relative to the display 
mapped to the x-axis of the histogram; see Figure 5.3 (a to b). One bar was selected at a time. The 
physical space for brushing (from the leftmost to the rightmost bar) spanned 165cm centred relative 

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 5.3: Techniques used in Design #3: Distance-dependent selection of filter attributes and scaling of ab-
stract visualizations. Filtering is controlled by lateral movement. In (a) and (d), the user is distant from the display, 
resulting in large views. Correspondingly, the table and views are filtered and highlighted by car manufacturer. In 
(a), “AMC” is selected, whereas in (d), “Volkswagen” is selected (AMC corresponds to left and Volkswagen to 
right with lexical sorting in histogram). In (b) and (c), the user is near the display, resulting in small views. Corre-
spondingly, the table and views are filtered and highlighted by mileage. In (b), cars with low mileage are se-
lected, whereas in (c), cars with high mileage are selected. 
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to the display. We scaled the views according to distance, to enable users to read data while mov-
ing. Figure 5.3 (b to c) shows this. In addition, the window that contained the table and the scatter-
plots was positioned according to position. The other views remained fixed. 

5.1.4 Summary 
The three designs that combined visualizations on large displays with proxemics based interactions 
showed: First that it is possible to design and implement meaningful combinations from these two 
fields; and second that these designs may be useful with large displays. 

5.2 Studies 
As I briefly described above, we evaluated the three interface designs in formative lab studies. In 
the studies, we compared the novel interaction techniques to mouse-based interaction techniques. 
Each interface design was evaluated with six participants (often recommended for formative user 
studies [105]) aged between 23 and 37 years (M = 29.8), in sessions of approximately an hour per 
participant. While a study with six participants gives low power (in the sense of being able to detect 
quantitative differences) it allowed us to gain qualitative insights about usefulness. We compared 
the novel interaction techniques to a mouse-based interaction technique because previous work has 
suggested that participants generate more comments when exposed to several alternatives than to 
just one [144]. While the studies were formative, we asked users to solve predefined tasks that were 
adapted from previous studies of information visualizations. The idea was to ensure that they en-
gaged in demanding tasks to experience and be able to discuss the usefulness of the interaction 
styles. 

The studies aimed to provide initial, qualitative data about usefulness by having participants use and 
compare designs. The studies were lightweight and formative (i.e., qualifying and developing de-
sign opportunities rather than finding a “best” option). This choice of method requires justification. 
The overall aim of the paper was to explore design opportunities. We therefore decided against run-
ning a controlled experiment, as done in many evaluations of information visualizations and of 
proxemics [74, 166]. Instead, we wanted to gain empirical insight on a range of design possibilities. 
We also wanted to avoid rushing to experimentation (as warned about by e.g., Greenberg & Buxton 
[54]). We decided against some of the other methodologies for evaluating information visualiza-
tions [26] because they mostly assumed a hi-fidelity and well-defined design or required a specific 
application domain, task set, or user base. The former was not the case for the combination of infor-
mation visualization and the novel interaction techniques, and the latter seemed to constrain finding 
and developing design opportunities. 

We collected qualitative data from the studies. In addition to capturing preference data, at least two 
persons observed users while interacting: the observers took time-stamped notes that could be refer-
enced and coupled to video recordings during analysis. We interviewed participants after trying 
both the novel and mouse interface, to learn about their experiences and thoughts about the novel 
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interaction techniques. After completing all the tasks, we interviewed participants about each of the 
forms of interaction provided by the novel interfaces (e.g., distance and orientation). 

We analysed each study immediately following its last session using the Instant Data Analysis tech-
nique [84]. For the analysis, we gathered in front of a whiteboard. Observations and interview com-
ments were discussed. When we identified an important issue, we wrote it on a sticky note and 
fixed it to the whiteboard. We categorized the notes into themes. Based on the themes, we noted the 
most important findings with clear references to the observations and any supporting video record-
ings. On average, the analysis session lasted around two hours. 

Next, I present the findings that emerged from these analyses. 

5.3 Findings across the three interfaces and studies 
In the following, I present the findings across the three studies that emerged from these analyses. 

5.2.1 Subjective preferences for bodily interactions 
Participants in all studies talked positively about using body movements to drive interactions for in-
formation visualizations. 

In study 1, participants said they liked controlling map navigation with their body: it is a “nice con-
cept to use your body to move” and “it is nice that you move a lot, particularly in a work environ-
ment”. Two participants mentioned that movement was intuitive, three that movement required less 
effort than the mouse, and two perceived movement to be faster than using the mouse. Participants 
were split in their preferences for the two movement-based techniques (absolute: 3; relative: 2; one 
undecided). Two participants commented that the absolute technique was intuitive, in particular be-
cause there was a direct relation between movement and what happened on the screen.  

In study 2, participants described using distance as natural, intuitive, and making good sense. One 
participants said it was "natural to use the body", another that it was "intuitive to get more infor-
mation in less space when up close. It works very well". A third participant said in relation to aggre-
gation of data with increasing distance that “it was nice that there was not much data when stand-

ing back.” 

In study 3, participants said their liked the idea of mapping physical space to data space. After hav-
ing used both conditions, one participant said: “Distance for selection of variables seems very natu-
ral”; another described it as fun, although he felt more efficient when using the mouse. Participants 
however, were split on preference for using movement- or mouse-based interaction, and all sug-
gested combining the two forms of interaction, one reason being that they could change variables 
using the mouse. 

These results showed that participants could see the usefulness of driving information visualizations 
using bodily movement. This reiterates the findings presented in Paper I, that movement has poten-
tial to be used to implicitly or explicitly drive interactions with visualizations on large displays, and 
that people might find such interactions useful and perhaps even natural. 
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5.2.3 Movement and thought 
Participants in the three studies gave comments and we observed interactions that had to do with 
task planning and execution, mental effort and spatial memory. 

In study 1, participants used physical movement to structure tasks. Several participants moved to 
the back of the room in preparation for receiving the next task. In particular, one participant trans-
formed the navigation task of finding and clicking an object at high magnification to a smooth 
movement from the back of the room (zoomed out) to the display (zoomed in). This suggests that 
movement-based interactions might support people in planning and executing tasks. Likewise, it 
suggests movement-based interaction might lead people to use suboptimal strategies. 

In study 2, participants self-reported varying levels of required mental effort in using proxemics-
based interaction. For example, a participant stated that although it was natural to move, using 
movement to interact with the visualization required more mental effort while moving, than using 
the mouse. In contrast, several other participants in the same study seemed to change easily between 
representations by moving. In particular, we observed three participants that moved back and forth 
repeatedly to switch between representations for solving tasks that involved relating homes or dis-
tricts to municipalities. Changing representations using the mouse seemed less fluid, and partici-
pants glanced more often at the slider shown at the left of the display. In relation to aggregation of 
data with increasing distance, one participant said that the low amount of data was nice when stand-
ing back, which suggests that less mental effort was required to read the visualization. 

In study 3, participants used physical descriptions of the data space. For example, one participant 
said “Let me see what is out here”. Another participant said that he “was in kind of a lane where 
[he] could filter instead of clicking with a mouse”, adding, “It feels navigable”, and considered that 
the way he had the attributes mapped to the floor space, he would be able to “go to cars with large 
engines”. 

These results indicate that when using large displays, people may naturally use the space in front of 
displays to structure tasks, and to interact implicitly and explicitly with less effort by using move-
ment compared to traditional interaction techniques (i.e., mouse and keyboard). It also indicates that 
people might map concrete physical spaces to abstract data, which visualization designers might use 
to support interaction and thinking. 

5.2.2 Free or constrained movement   
Participants in the three studies felt constrained, which was in contrast to be able to move freely. 
Some participants suggested solutions to alleviate these problems by temporarily disabling or lock-
ing interactions based on proxemics.  

In study 1, participants talked about the freedom to move around, which they experienced differ-
ently for the two proxemics-based interfaces. With Absolute, one participant found “a lot of free-
dom to move all over the place”; in contrast with Relative, two participants felt “restricted” and 
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unable to “move freely”. In contrast, participants liked the Relative interface for several other rea-
sons. One participant reasoned that “zooming was nice here” because one could zoom without get-
ting too close to the screen; when using the Absolute interface, participants zoomed by moving 
close to the display. One participant mentioned the benefit of a stable centre, in contrast to the Ab-
solute interface where the display was changing much of the time. However, with the Relative inter-
face participants had to keep track of their position relative to the centre. They described how you 
were “fixed to the centre” and that it “required concentration to keep track of zones”. 

In study 2, we observed participants’ difficulty in finding and staying within discrete distance 
zones. This resulted in abrupt attribute changes, and thus confusion. These observations were con-
firmed from participants’ comments. To see certain information, participants were bound to certain 
distances. From our observations this was a problem for one participant in particular, who said that 
it was "natural to step back for overview, but then the data [he] want[ed] to overview disap-
pear[ed]." In the mouse condition, this participant solved the tasks while standing noticeably far-
ther from the display than the other participants. He for example, read details about individual 
homes from around 1.5m distance. Other participants made related comments. A participants for 
example said that you have to get close to see details on individual homes, but then “up close, [he] 
had trouble keeping an overview of it all.” Another said that she had to remember to stand still at a 
distance.  

In study 3, we observed that participants had problems in finding and staying within discrete dis-
tance zones, in particular that participants drifted when moving sideways to brush histogram bars. 
Participants suggested locking the position tracking to be able to approach the display or step back 
from it, without affecting the display state. A participant said “[I would like to] be able to lock such 
that I can walk closer to something and then unlock it again”; another that “[I would like to] be 
able to lock variable choice…” A participant demonstrated this by taking off the tracking cap so 
that he could move without changing attributes. The scaling of visualizations according to distance 
also confused participants. One participant got confused when pointing at the scatterplots, because 
it scaled when he walked closer to the display while doing so. This effectively locked the partici-
pant to a given position to be able to point in a workable manner. In the baseline condition, several 
participants moved closer to the display to point at data, which suggest that scaling, at least for 
some visualization techniques, is unviable. 

These results first of all indicate that it is quite possible to construct poor designs, that seem sensi-
ble in the design phase, but clearly fall through even in lab use. Particularly, they suggest that it is 
problematic to use head orientation in the sense of continuous input mode, although might still be 
useful as part of a larger interaction space, or implicit interactions (e.g., use gaze direction as input 
to degree-of-interest functions). 

5.2.4 Unnatural movements 
Participants in the three studies both were observed to, and talked about how they moved in unnatu-
ral ways.  
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In study 1, some participants moved very slowly and some expressed uncertainty about the size of 
steps to take. It seemed to be difficult for participants to use their body movement for fine-grained 
navigation, in which it is harder to stop panning compared to using a mouse, perhaps due to inertia. 
Some participants adopted particular movement strategies, presumably to deal with these difficul-
ties. Three participants leaned rather than moved to control location; two participants kept a foot in 
the centre of the Relative condition while lunging forward or to the sides, which one participant lik-
ened to dance-mat games. In addition to position tracking, head pitch was used to pan vertically. 
This caused unintended panning when participants looked down, which made participants aware of 
their posture and head orientation, and thus potentially caused unnatural movements. Some partici-
pants suggested the use of alternative means for panning, for example by using mid-air gestures. 

In study 2, most participants moved somewhat naturally to control aggregation level (i.e., based on 
semantic zooming), but it was difficult for participants to control the detail view by head orientation 
as we had designed it. The primary reason for these difficulties seemed to be that it was hard for 
participants to keep their head in a steady position. Thus, all participants said they preferred the 
mouse for selecting the area to show details. A reason for this might be that the combination of us-
ing body position and head orientation was confusing. Participants suggested different ways of im-
proving the movement-based detail view. Three participants said that they wanted to use their hands 
to freeze the detail view or for selecting houses, when they were within reaching distance. In addi-
tion, two participants suggested leaning close to freeze the details view. This suggests that details 
on proximity, or using head position relative to body position, may be a promising design variation. 

In study 3, participants moved cautiously, often while looking at the histogram. We expect their fo-
cus on the histogram was partly to orient themselves to the discrete distance zones and histogram 
bars. The problems described in the previous section may have induced the cautious movements, in 
that participants had no method to freeze or lock to a particular zone. A participant said “[I would 
like to] be able to lock variable choice such that [I] don’t change in error, when [I am] busy”. An-
other reason for the cautious movements was that scale and position of views depended on partici-
pants’ location. Thus, participants had to remain in a fixed position to read a visualization. Four par-
ticipants said they disliked how this made them feel fixed to their position. They suggested instead a 
fixed scale (and using a locking mechanism as suggested above to be able to look closer at an item). 
Alternatively, three participants suggested improving the location-dependent scaling and position-
ing by using discrete steps, thus reminding of the selection of data and attributes. 

These results shows that body position, although described as useful by participants, can also make 
people move in unnatural ways and impart a feeling of being fixed to a position. Thus, it suggests 
that designing explicit movement-, orientation- and location-based interactions should be consid-
ered very carefully, to let people use them in ways that are based on their natural movement and 
motor skills. 
Specifically, with abundant display space, people will want to move to and from the display. Thus, 
it seems important to allow people to lock and unlock body-based interactions using e.g., mid-air 
interaction techniques, to enable people to do just that. 
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5.3 Summary and conclusion 
In this work, we identified design opportunities and presented empirical findings from formative 
evaluations of three prototypes, which we compared to baseline conditions. Among other things, the 
results showed promise for changing zoom level or visual representation with the user’s physical 
distance to a large display. Above, I presented four themes that we observed across the prototypes: 

 Subjective preferences for bodily interactions 

 Movement and thought 

 Free or constrained movement 

 Unnatural movements 

These themes illustrated participants’ subjective preferences for bodily interactions, how they used 
these interactions to plan and execute tasks, how they influenced participants’ cognitive effort (self-
reported), and how they used the physical space to describe data and data operations. However, the 
bodily interactions also presented limitations to participants. They often moved less naturally and 
felt more constrained. 

We showed several possibilities for using position and movement to interaction with information 
visualizations. From the designs and evaluations it is clear that many additional opportunities exist, 
and that there is potential in applying such techniques to interacting with information visualizations. 
I return to discuss these in Chapter 8. 

 

 



 

 



 

 

 

Chapter 6 
Paper III 
F3: Fast, Fluid, and Flexible Data Analysis on  
Large and High-Resolution Touch Displays 
S. Knudsen & K. Hornbæk 

Abstract – While large, high-resolution displays with touch are becoming available, visu-
alizations on such displays rarely use expressive gestures and abundant display space. This 
paper describes F3, a system tailored for data exploration with touch on large, high-resolu-
tion displays. The design of F3 was informed by inquiries with a group of domain experts 
that analyse healthcare data. The touch interactions let users create new visualizations and 
combine parts of existing visualizations. After introducing F3, we present two studies of 
the system. First, we evaluated the usability of F3 in a laboratory study. Results suggest 
that users were able to use F3 for data exploration and that they valued its ease of use. Sec-
ond, we evaluated the utility of F3 for data exploration in a field study, where the group of 
domain experts used the system over two weeks. The field study shows that the domain 
experts could construct hypotheses, and generate and execute strategies quickly — support-
ing ad hoc discussions and question answering during meetings. These findings contrast 
domain experts’ descriptions of hours of trial-and-error with their current tools. 

My contributions to Paper III 
I carried the main responsibility of designing the F3 system, and all responsibility of imple-
menting it. I also carried the main responsibility of designing the studies of F3. My supervi-
sor, Kasper Hornbæk contributed to the design of the F3 system, as well as the study de-
signs. 

I was responsible for all parts of data collection and development of theory based on the 
collected data by running the lab study sessions, being present at the deployment site every 
day of the deployment study, and subsequently analysing the collected data, all of which 
are described in the following. My supervisor, Kasper Hornbæk contributed to data analysis 
through verbal and textual discussions.  

I wrote the first draft of the paper and drew all figures. Both I and Professor Kasper Horn-
bæk contributed with subsequent revisions to the draft. 
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In the third paper, we were inspired by the way, in which participants in the first study had imag-
ined using display space to spread out visualizations, to create new visualizations from existing vis-
ualizations, and to show these visualizations’ relations with trails of thought. Other work in human 
computer interaction and information visualization supported the participants’ ideas and inspired us 
to move further (e.g., [37, 143, 156]). The focus of our work was to design touch interaction tech-
niques for creating new and combining existing visualizations. Our goal was to explore how abun-
dant display space could change the possibilities for interacting with visualizations.  

We developed the ideas based on long-term collaborations with a group of healthcare data analysts. 
The group of analysts perform analysis and documentation for a nation-wide healthcare organiza-
tion comprising about 50 public hospitals, serving around 6 million citizens, and handling about 13 
million patient contacts annually. Collaborating with the group of health care data analysts rein-
forced our avenue of research, and provided a natural case for developing and evaluating the ideas. 
As part of the collaboration, we made inquiries with the group to understand their domain of work. 
We based these inquiries on observing and interviewing them while working. The group also partic-
ipated in the study described in Chapter 4 (see Table 4.1, group A and C). This gave us more insight 
in the domain, and the design possibilities. These methods enabled us to design a set of interaction 
techniques grounded in this domain. The goals of the techniques were to ease collaborative explora-

Table 6.1: Overview of study methods. Row 1 to 3 outline design work which I provide an overview of in Section 
6.1. Row 4 and 5 outline the formative evaluations, which was based on a preliminary version of F3. These eval-
uations inspired me to conduct the study described in the Chapter 7 (Paper IV). Row 6 outlines the formative lab 
study (Study #1) which is described in Section 6.4. Row 7 to 9 outline the field study (Study #2), which is de-
scribed in Section 6.5. 
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tion of large data sets by enabling creation and combination of visualizations. We strived for tech-
niques that are fast, in that actions have a short interaction time span, giving immediate reactions to 
interface actions rather than showing intermediary menus; fluid in that the system state is clear and 
prompt feedback is given on interaction choices; and flexible in that system elements can be com-
bined and results obtained in many ways. Table 6.1 provides an overview of the participant-based 
methods used in the studies. Note that I mainly focus on the studies marked with a grey back-
ground. However, while I do not focus on the formative evaluations shown in row 4 and 5, which 
was based on a preliminary version of F3, these evaluations inspired me to conduct the study de-
scribed in the Chapter 7 (Paper IV). 

The interaction techniques provide a novel approach to querying multi-dimensional data, and sup-
port drilling down, filtering, and grouping data. We designed the interaction techniques for bar 
charts and based their design on direct manipulation. Our idea was to enable analysts to combine 
database queries using visualizations of previous database query results through touch interactions. 
In designing the interaction techniques, we aimed to provide freedom in choice of analysis strategy. 
This benefits experienced analysts [36], and enables users to collaborate while constructing hypoth-
eses, generating strategies, and executing them quickly, thus supporting ad hoc discussions and 
question answering during meetings. 

I chose to include most paragraphs of Paper III in this chapter. I chose this approach, because I be-
lieve that Paper III is very compressed, and its results would benefit from more explanation. In do-
ing so, I provide additional considerations throughout. Additionally, I have chosen to provide fig-
ures that more closely match the domain for which I designed F3. The included paper paragraphs 
are marked with vertical lines to the right of the respective paragraphs.  

6.1 F3: Fast, Fluid, and Flexible 
We named the system F3: Fast, Fluid, and Flexible. F3 provides touch interaction techniques for 
visualizations on large displays. 

6.1.1 Domain 
To inform the design of F3, we conducted observations and contextual interviews [15] over two 
weeks at the health care analysts’ site to obtain a thorough understanding of their tasks. The first 
row (understand domain) in Table 6.1 shows this work. Isenberg et al. [71] and Carpendale [26] ar-
gued for qualitative methods in designing and evaluating information visualizations. We returned to 
the site for shorter day-visits throughout their work year to understand how their work changes in 
the course of a year. The analysts’ work reminds of tasks and contexts characterized by Kandel et 
al. [82] , and their level of expertise falls somewhere between hackers and scripters. 

The group of analysts comprise about 10 employees, and are part of a group of about 35 employees 
that work with documentation of healthcare services. They have mixed backgrounds, including eco-
nomics, political science, mathematics, statistics, medicine, public health science, and computer sci-



Chapter 6: Paper III 

56 

ence. They primarily use SAS, SQL, and MS Excel for data analysis. They use visualizations to un-
derstand data in Excel (e.g., bar charts, line charts, and scatterplots), and communicate data exter-
nally in static documents and with QlikView. 

Domain Tasks and Data 

The health care analysts receive data from all national hospitals at regular intervals. The data is pri-
marily used to compute rates for hospital treatments (diagnosis related groups [46]), which are 
based on matching hospital activities data to expenses. They publish these rates annually, enabling 
the government to use these rates as basis for compensating individual hospitals based on their 
workload. Figure 6.1 shows an overview of these collaborations and computation processes.  

 

The received data comprise medical activities and financial accounts data. Medical activities data 
describe what has happened at a hospital (e.g., patient admittance and discharge dates from the 
wards and blood test meta-data from clinical biochemistry). Financial accounts data describe the ex-
penses incurred at a hospital (e.g., doctor and nurse salary expenses for each hospital department, 
implant costs for each department, and overhead costs). To compute the rates, the analysts establish 
the rate foundation table, which combines the medical activities and financial accounts data. The 
table contains a row for each patient (~13M/year). Each row describes a patient contact (an admis-
sion and discharge for inpatients and comparable information for outpatients), and comprise col-
umns of patient information (e.g., age, gender, diagnoses), treatment information (e.g., procedures, 
duration, ward, hospital), and cost information (e.g., diagnosis related group, salaries, overhead). 
The domain data comprises for example: (i) codes describing operation procedures in a hierarchy of 
about 9.000 codes; (ii) hospital and ward definitions in another hierarchy of about 20.000 wards, 
that describe physical locations that change both name and id over the years; and (iii) admission and 
discharge data that were supposed to span two years, but spanned 44 years due to data registration 
errors. 

 

 
 
Figure 6.1. The analysts’ collaborations and computation process. 
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The analysts’ work is characterized by constant adaptation to changing healthcare policies. This 
means that the data they handle change on a yearly basis. New information codes are added and ex-
isting codes may be changed or removed. Changes include addition of administrative patient path-
way codes, combinations of codes describing in- and outpatients, and introductions of new medical 
procedures, thus requiring new description codes. 

Thus, a large part of their work lies in data wrangling [82], in that they need to adapt their existing 
data flows to changes, and understand where errors have occurred in the process. 

Context of Work  

The health care analysts work in an informal work environment dominated by three- to four person 
offices. They frequently interrupt each other with quick questions such as “do you remember the 
code for the new cancer treatment?” Additionally, pairs of analysts meet daily to weekly for sched-
uled one to two hour analysis meetings in front of a computer to work on a shared task. The analysts 
also hold weekly group analysis meetings with their manager to discuss ongoing work. Their cur-
rent analysis meeting practice is, to present data and analysis problems, note questions and com-
ments, and return to their desk after the meeting to continue their analysis based on the received 
questions and comments. For example, when presenting analysis problems during such meetings, 
other participants questioned whether an analyst had “look[ed] into whether they [the data] all con-
tain implants?” which would require the analysts to return to their desk after the meeting to answer 
the question. 

The process of setting treatment rates (diagnosis related groups [46]) involves communications with 
external political stakeholders such as clinical societies, policy makers, and regional healthcare pro-
fessionals. Collaborating with these diverse groups requires communication of complex data to peo-
ple who have limited experience with data analysis. 

The various stakeholders have their own political agendas. For example, the clinical societies aim to 
advance the focus of their specific medical specialty, and the rates associated to it. During inter-
views, the analysts have described their current collaboration with the clinical societies as an “end-

less series of meetings and email exchanges that take the form of negotiations”. 

In addition to the yearly task of computing rates, the analysts work on shorter tasks to support inter-
nal and ministerial political functions, as well as researchers, journalists, and law enforcement, who 
all share an interest in obtaining knowledge from the data. 

Design work 

From these inquiries with the health care analysts, we became interested in supporting parts of their 
work with quicker, collaborative, ad hoc data exploration tools. As part of designing F3, we con-
ducted design workshops, and evaluated lo-fi prototypes and mock-ups with the analysts. The sec-
ond and third row (design) in Table 6.1 shows this work. During our collaborations, the analysts 
worked creatively with us to come up with novel interactive visualization designs. Participants in 
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the design workshops for example considered support for exploring why the number of patients ad-
mitted for specific treatments dropped from one year to the next and analysing the cost distributions 
of specific treatments across hospitals. 

Before using F3, the analysts were accustomed to discuss data analyses during meetings, and to 
look at data individually. With F3, the goal was to let the analysts discuss data analysis problems 
while interacting with the data. We imagined the analysts could use F3 to collaborate while con-
structing hypotheses, generating strategies, and executing them quickly, thus supporting ad hoc dis-
cussions and immediate answers to questions about data during meetings. 

Thus, we designed and implemented F3, which I describe in the next section, to support the ana-
lysts’ data exploration tasks. 

6.1.2 Design Goals 
The goals of F3’s interaction techniques were to ease collaborative data exploration of large data 
sets by enabling fast, fluid, and flexible creation and combination of visualizations.  

F3’s interaction techniques provide a novel approach to querying multi-dimensional data, and sup-
port drilling down, filtering, and grouping data. In designing the interaction techniques, the aim was 
to support data exploration by enabling fast, fluid, and flexible interactions on data: 

Fast:  User interface actions have a short interaction time span. In designing F3, we aimed to 
provide immediate reactions to interface actions rather than intermediary menus. The ar-
gument is that it allows users to quickly gain an overview of datasets and obtain valuable 
insights. In addition, a data cube store pre-computed aggregations (see next section), such 
that even complex queries return fast results. 

Fluid:  The user interface provides continuous feedback and invite for unbroken series of interac-
tion. In designing F3, we aimed to provide feedback on possible choices and the state of 
the system, and ensure that results of actions open the possibility for new interactions. 
This for example means that F3 gives feedback on possible release locations similar to 
tableau [168] when users drag user interface elements and that it is possible to interact 
with many parts of visualizations. 

Flexible:  The order and approach to data exploration is flexible. In designing F3, we aimed to cre-
ate interaction techniques that allow for variation in data exploration. For example, there 
are many possibilities and ways of combining user interface elements to produce different 
outcomes and users’ can accomplish many goals in several ways. 

In designing F3, we wanted visualization components and data fields to be able to be touched and 
dragged onto as many elements in the user interface as possible. For all combinations, we reviewed 
how well they supported the required low-level visualization tasks. 

We aimed to provide interaction techniques that support what Brehmer & Munzner [21] described 
as data discovery, exploration, and comparison. They described these as the reason users conduct a 
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task (i.e. why). We supported these intentions primarily with manipulate and introduce interaction 
techniques. Brehmer & Munzner described these as the manner in which users conduct a task (i.e. 
how). When using F3, users create many related visualization views, which F3 show with line con-
nections. Thus, some of F3’s interaction techniques focus on changes within views and some on 
changes between views. Therefore, in the task typology, some of F3’s interaction techniques focus 
on supporting manipulation tasks, while other focus on supporting introduce tasks. 

As part of designing F3, we conducted a small lab study with three participants. In the study, we 
asked participants to analyse a small data set about cars. In the study, we observed participants’ un-
certainty about the relations between views. This observation led to F3’s representation of parent-
child relations, which I describe in section 6.2. 

We designed the interaction techniques with inspiration from design guidelines for post-WIMP user 
interfaces [40, 90] (e.g., consider feedback, reduce indirection, and integrate UI components in vis-
ual representations). We also aimed to enable users to use both hands in a single task (e.g., to select 
an item as context for another, see [57]), or in simultaneous tasks (e.g., do two similar actions at 
once). 

The interaction techniques in F3 can be adapted to many visualization techniques. For F3, we chose 
to focus on bar charts. The analysts that we designed F3 for, are familiar with bar charts, and use 
these often. Additionally, bar charts display aggregate information, and therefore apply well to the 
visualized domain data. I return to discuss the applicability of the interaction techniques to other 
visualization techniques in section 6.6.4. 

6.1.3 Data Model 
We designed F3 primarily to help the health care analysts understand the rate foundation table, 
which I described in section 6.1.1, and its potential data errors. The rate foundation table is multi-
dimensional and contains highly hierarchical data. Constructing an OLAP cube  [53] based on the 
rate foundation table, facilitates slicing, drilling down, and pivoting according to any of the tables’ 
columns to enable detailed data exploration and analysis. 

We based F3’s visualization and interaction techniques on the data cube model. This helped facili-
tate meaningful results from combinations of user interface elements. The core parts of the model 
consist of dimensions, levels, members, and measures. 

Designers of OLAP cubes often map nominal data columns in a data table to dimensions. For exam-
ple, the often map, year, month, and day columns to a date dimension. These are levels of the date 
dimension hierarchy, and instances of these levels are members. For example, a date dimension may 
contain year as a level, which contains 2013 as a member. F3 encodes dimensions with data bars’ 
horizontal position in bar charts. 

Designers of OLAP cubes often map quantitative data columns in a data table to a measure. For ex-
ample, they often map costs to a measure. Measures contain aggregates of raw data columns, 
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grouped by dimensions. F3 encodes measures with data bars’ height in bar chart. To be able to con-
struct histograms, it is useful to bin some measures, for example to construct a histogram of costs. 
Therefore, the data model can contain data fields, which are possible to use as both measures and 
dimensions. I refer to these as binned measures. 

Previous information visualization research have used the data cube model to support data explora-
tion and analysis (e.g., [39, 138, 168]). 

 

6.2 Interaction Techniques in F3 
The interaction techniques in F3 support creating visualization views by combining, extending, or 
re-using existing visualizations. In doing so, the techniques provide a novel approach to querying 
multi-dimensional data and receiving visualization views as query results. Table 6.2 presents an 
overview of the techniques; Figures 6.2 to 6.10 show them as sketches to improve readability. The 
first techniques are simple but necessary for exploring data; the latter techniques are more complex, 
and aim to help solve specific tasks. Next, I describe the basics of each technique, discuss design 
alternatives, and open issues. 

6.2.1 F3 Interaction Concept 
In F3, access to data happens through a data field menu in the top part of the display (see Figure 
6.2). The menu shows dimensions and measures from the data cube model [53]. Users drag data 
fields from the menu and drop them on relevant parts of the user interface. 

Interaction Tech-
nique 

Sec-
tion 

Action Result Complexity 

View Creation 6.2.2 Drop a data field on the canvas A new view Simple 

View Configuration 6.2.3 Drop a data field on a view’s axis The view’s axis is re-configured Simple 

View Cloning 6.2.4 Drag a view with two fingers A clone of the view Simple 

View Synchroniza-
tion 

6.2.5 Drag views so that they overlap, then tap 
button 

Y-axes in the two views use the 
same scale  

Simple 

View Exploration 6.2.6 Drop a data bar on the canvas A view drilled down on the data bar Intermediate 

View Filtration 6.2.7 Drop a data bar on a view’s filter area The view is filtered based on the 
data bar 

Intermediate 

View Exploding 6.2.8 Drop a data field on a view’s explode area Views for each of the data field’s 
members 

Intermediate 

Trail Cloning 6.2.9 Hold data bar, while clone dragging a child 
view 

A clone of the trail between data bar 
and view  

Complex 

View Matrix crea-
tion 

6.2.10 Drag views so that their corners overlap A matrix of views combining the 
views’ axes 

Complex 

Table 6.2. Overview of interaction techniques. 
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We opted to use a permanent and fixed position for the data field menu. As an alternative, we con-
sidered showing a menu when touching relevant parts of the user interface, but imagined that the 
chosen solution requires fewer instructions to get started, and thus work better for walk-up use. 

Views are the main user interface element of F3. A view shows data in bar charts. The x-axis en-
codes dimensions and the y-axis encodes measures (see Figure 6.2). Users move views by dragging 
with one finger.  

6.2.2 View creation 
To create a view, users drag a data field from the data field menu and release it on the canvas (the 
background area), which results in a bar chart that shows the dropped data field (see Figure 6.2). 
We designed view creation with focus on speed and of ease of use, since creating a view is a neces-
sary first step in most tasks, and thus frequently used. Because the dragged data field may both rep-
resent a dimension and a measure, the two possibilities provide slightly different results. A dragged 
dimension or binned measure results in a view that encodes the dragged field on the x-axis, whereas 
a dragged measure results in a view that encodes the dragged field on the y-axis. The axis not 
mapped by the released data field shows a default data field provided by the data model, which for 
the y-axis could be number of observations in the database. After creating the view, users may re-
configure views’ axes, which the technique I described next facilitates. 

F3 scale the y-axis according to the value of the maximum data bar of the displayed data (zero is 
obviously always shown). The maximum value of the axis is computed to be the smallest of 1, 5, or 
10 multiplied by power(floor(log(value of maximum data bar)). This satisfies three criteria: (1) the 
scale and tick marks are easily readable, (2) the likelihood that different views use the same scale is 
high, and (3) data encodings use much of the space within views. 

 

We opted to use a technique for creating views that requires minimal interaction and let the system 
provide default values for other potential choices. As an alternative, we considered a technique that 
would require users to drag two data fields to create a view. This would ensure that users were 
aware of axis mappings. We chose not to require this to provide as fast interactions as possible. 

 
Figure 6.2. Drag data fields onto view axes to reconfigure views. 
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We designed view creation to enable users to quickly obtain high-level information about the data 
cubes’ dimensions, and thus be able to construct an overview of data. For example, to see the distri-
bution of patients across regions in Denmark, users simply drag out the treatment location dimen-
sion. 

The quick and simple technique of obtaining high-level information about dimensions is similar to 
Tableau [168]. However, Tableau requires users to select both dimensions and measures to obtain a 
similar overview. We wanted to avoid this, and opted to define a default measure and dimension. 
This reduces the amount of interaction, potentially at the price of users’ reduced awareness of the 
selected encoding. 

6.2.3 View Configuration 
To configure a view’s axis, users drag data fields from the data field menu and release them on a 
view’s axis label. This allows users to perform the most essential configurations of a view. It is pos-
sible to drop dimensions on x-axes, and measures on y-axes (see Figure 6.3). Dragging a data field 
over an axis highlights the release area, if the dragged field is compatible with the axis. Dropping 
the data field configures the axis. This provides users the opportunity to alter views as needed, and 
to select alternatives to the default selection. View configuration thus allows analysts to change the 
visual encoding of a view (i.e. change [21]) 

  

Other work has facilitated such choices by direct axis interaction. For example, Sadana & Stasko 
[122] let users tap an axis to see a list of data fields. Tapping a data field replaced the existing with 
the new one. This approach is equally valid, but to keep the overall design consistent across F3’s 
interaction techniques, we chose not to provide this option. 

Tableau [168] also uses drag and drop to configure axes, but facilitates both replacement and addi-
tion to the axis encoding. Tableau facilitates replacement by dropping data fields on axes, while 
dropping data fields on a special rows and columns area results in a more complex spatial encoding. 
This allows construction of increasingly complex visualizations, at the cost of less quick reconfigu-
ration of existing visualizations. F3 facilitates data exploration through other means of interaction. 
Therefore, the need, and thus ability, to create complex visualizations within a view is smaller and a 
quicker reconfiguration of axes seems to be a better choice.  

 
Figure 6.3. Drag data fields onto view axes to reconfigure views. 
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6.2.4 View Cloning 
To create a clone of a view, users drag a view with two fingers (see Figure 6.4). This allows users to 
continue their exploration in a clone, for example by changing axis encoding, while the original 
view is preserved. We designed cloning to work similar to drag, and leverage the added efficiency 
provided by chunking [23] drag and clone interactions. To rearrange a view and create a clone, us-
ers start by dragging a view. Adding a second finger after positioning the original view, results in a 
clone operation. The user is then free to use one or two fingers to continue positioning the clone 
view. 

F3 reserves two-finger and two-hand interactions for more advanced and infrequent interactions. 
We designed view cloning for single hand two-finger operation. 

Because the idea of working with many views are integral to F3, we chose to provide a quick 
method to clone views. This is in contrast to many other systems. For example, some desktop-based 
systems allow copying visualizations by using copy and paste operations (e.g., Tableau [168]). This 
is a two-step process, and thus slower than F3. Lark [143] lets users create clones by dragging fin-
gers from the visual representation of the information visualization pipeline, which is very compara-
ble to F3. Where Isenberg et al. based Lark’s technique on interacting with the information visuali-
zation pipeline, F3’s technique is based on interacting with the view itself, which I believe offers a 
more direct approach. 

We designed the technique to provide a way for users to preserve a view in the middle of an analy-
sis, to use two alternative approaches to a data analysis, or to split an analysis into two comparable 
branches. For example, in analysing the cost distributions of a hospital, users might start from a 
view that encodes the number of patient contacts on the y-axis. Before configuring the y-axis to en-
code costs, they can clone the view to be able to refer back to the number of patient contacts. 

 

6.2.5 View Synchronization 
To synchronize views’ y-axis scales, users drag a view such that its side area overlap another view’s 
side area (see Figure 6.5). This helps users to compare views. When views that encode the same 
measure overlap, a synchronize button appears above the y-axes in both views. While holding onto 
the view, tapping the synchronize buttons with a finger from the other hand, cause the view in 
which the button was tapped to adopt the scale of the other view. 

 
 
Figure 6.4. Drag views with two fingers to clone views. 
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We designed the technique with the aim to reduce unintentional synchronizations while for example 
arranging views and to keep the design of the technique similar to the other techniques. We also 
considered if the technique should facilitate measure changes, but chose not to, to reduce chances of 
errors. 

We designed view synchronization to enable users to compare views side by side as described in 
Chapter 4 (Paper I). By providing a way for users to scale views similarly, they can compare the 
views using the spatial encoding. For example, in comparing cost distributions for a large and a 
small hospital in two separate views, users can synchronize the scales. This allows them to compare 
the visualized data more easily, than if they had to compare data in the two views encoded with two 
different y-axis scales. 

 

6.2.6 View Exploration 
To create a child view based on data represented by the parent data bar, users drag data bars out of a 
view and release them on the canvas (see Figure 6.6). This allows users to drill down and perform 
more detailed data exploration in a new view. The metadata necessary to provide a useful result is 
obtained from the data model that provides child members (e.g., 2014, September, or 22nd) at a 
level below the data bar (e.g., year, month, or day). F3 show these child members on the x-axis in 
the child view. In case no child members exist for the dragged member, the child view shows the 
dragged member. 

To add additional data bars’ child members to the child view, users drag these bars from the parent 
view and release them on the child’s filter area, which is located above the data area. This allows 
users to select multiple items from a view to analyse in more detail. To show how the child view 
was created, a line represents the parent-child relation from the parent data bar to the child view’s 
filter area. 

As an alternative, we considered that releasing a data bar would result in a child view similar to that 
of the parent, but only showing the dragged data bar. Such a design would be easier to understand, 
but would require a greater number of interaction steps. In case no child members exist for the 
dragged member, this is the result. 

 
Figure 6.5. Drag views onto each other so that they overlap. A synchronize button to appears. Tapping it syn-
chronizes the axes’ scale. 
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Creating a series of views, in which each child is the parent of another child, shows a history of ex-
ploration steps. I described this theme as trail of thoughts Chapter 4. F3’s parent-child representa-
tion does not rely on colour encoding, thus freeing colour encoding for other purposes. At the other 
end of the design spectrum, colour highlighting could completely replace the use of line connec-
tions, which might be sufficient as long as there are relatively few views. Since the aim of F3 is to 
support numerous views, it is better to use line connections to represent parent-child relations. 

We designed view exploration to enable users to go into more detail with parts of data and to ex-
plore data. For example, in looking at the number of patient contacts per region, users can explore 
patient contacts in more detail within a region by dragging out the data bar for that region. This al-
lows users to see patient contacts for hospitals within that region, while still maintaining the over-
view. Dragging another data bar out, allows users to compare the two regions in more detail. 

 

 

6.2.7 View Filtration 
To filter data shown in a view, users drag data bars out of a view and release them on another, yet 
unrelated, view’s filter area (see Figure 6.7). The technique works similarly to view exploration, and 
allows using views as filter palettes, thus supporting flexible exploration in other views. F3 high-
lights the filter area when users drag data bars to it. Additionally, it represents multiple filters on a 
dimension as a single circle. These are logically OR’ed. F3 represent filters on different dimensions 
as different circles. These are logically AND’ed. Because the design does not include range-queries, 
it is useless for two filters on the same dimension to be AND’ed. Flicking up or down on a filter cir-
cle inverts the filter. Similarly, flicking left and right on the filter circle enables or disables the filter 
(this also works for view exploration). 

 

 

Figure 6.6. Drag data bars onto a views’ filter area, to filter by the dragged data bar. 

 

Figure 6.7. Drag data bars onto a views’ filter area, to filter by the dragged data bar. 
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We designed view filtration to enable users to use parts of views to work with other views. On the 
surface, view exploration and view filtration appear similar. However, they support different tasks 
and approaches to data analysis. For example, in looking at a view that shows different pregnancy 
related treatment groups, users might want to see how the distribution among the treatment groups 
looks for patients at 30 to 39 years (30-year bin). Thus, they use the create view technique to create 
a new view that shows age distribution for the entire data set. Then, they drag the 30-year data bar 
from the new view and drop it on the filter area of the view showing the pregnancy related treat-
ment groups. Flicking the filter on and off allows the users to compare the entire age span to that of 
the 30-year bin, and thus see views one by one as described in the Juxtaposing theme in Chapter 4 
(Paper I). 

6.2.8 View Exploding 
To explode a view according to members of a data field, users drag data fields from the data field 
menu, and release them on a view’s right-hand side (see Figure 6.8). This facilitates breaking down 
the original view by the dragged data field and comparing its different members to each other, simi-
lar to small multiples. The explode area is highlighted when dragging data fields on top of it. Re-
leasing the data field generates views for each member of the dimension. The abundant display 
space allows member views of similar size and scale to the original view, which facilitates compari-
son. 

The result of the technique is that the original view’s area increases, such that it contains the origi-
nal view, as well as the member views to the right of the original view. F3 shows members in a 
scrollable list if there are more than four members. F3 aggregates the members that scrolling hides, 
in a view to the right of the list.  

 

 

Data bars from other views may be dropped on the explode area, just like data fields, to explode the 
view by child members of the aggregate represented by the bar. For example, dropping the data bar 
2013 on the explode area, generates member views filtered on quarters of 2013. 

 
Figure 6.8. Drop data fields on views to create copies of the view, filtered for values of the dropped field. 
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We designed view exploding to enable users to see a view de-aggregated into parts by a selected di-
mension or data bar, similar to small multiples. For example, in looking at a view that shows differ-
ent pregnancy related treatment groups, users might want to see how the distribution among the 
treatment groups looks for different patient age groups. Thus, they drag the patient age dimension 
from the data field menu and drop it on the explode area of the view showing the pregnancy related 
treatment groups, to see and compare the distribution of pregnancy related treatment groups across 
age groups side by side as described in the Juxtaposing theme in Chapter 4 (Paper I). This would for 
example allow them to analyse if certain treatment groups are more dominant for older patients 
compared to other patient age groups. 

6.2.9 Trail Cloning 
To clone an entire exploration trail, users hold onto a data bar in a parent view, while dragging a 
view using two fingers similar to cloning a view (see Figure 6.9). This facilitates comparisons be-
tween subsets of data, which may be useful, for example, when a user look at one part of data, and 
would like to see if other parts show similar patterns. When holding onto a views’ data bar, F3 high-
lights trails of the view that users can clone. This sets the context for the following interactions. Us-
ing the other hand, two-finger dragging a highlighted view creates a clone trail. These interactions 
result in a new exploration trail that show views similar to those in the original trail. The interaction 
technique facilitates fast comparison between the two sets of data, in that users can create the new 
trail quickly, and provides fluidity, in that it is possible to perform the interaction as part of a longer 
series of interactions. F3 positions the cloned trail where users release the dragged view, and lays 
out intermediate views similar to the original views, which the right side of Figure 8 shows. F3 al-
lows creating trail clones when all members between the data bar held on to and a child view exist 
in the potential trail clone. 

The abundant display space provides the opportunity of showing many views. Trail cloning pro-
vides a fast way of creating them. In particular, the technique facilitates comparison between multi-
ple comparable slices of data, which is a common data analysis task [4]. 

We designed trail cloning to enable users to create an analysis branch similar to a current branch, 
but with another basis. This enables users to compare parts of data. For example, in looking at age 
distributions of pregnancy related treatments (major disease code 14) in the capital region, users 
might want to see the same distribution, but for another group of treatments. Thus, they use two-
finger dragging to clone the view that show age distributions, while holding onto another treatment 
group, to compare age distributions for the two groups of treatments (see figure 6.9). 
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6.2.10 View Matrix Creation 
To create a view matrix of the combination of two views, users drag one view’s corner on top of an-
other view’s corner (see Figure 6.10). This allows users to relate and compare data in the original 
views. When a user drags the top-left corner of one view on top of the bottom-right corner of an-
other view, F3 shows view matrix creation is possible by highlighting the views’ corners. When the 
user releases the view, F3 creates a matrix that combines the two views’ dimensions and measures. 
The source views keep their position within the matrix. 

The number of rows and columns in the matrix depend on the dimensions and measures in the two 
source views. Dimensions that have no corresponding measure (e.g., fruit or hospitals), only fit on 
x-axes, and thus only on matrix columns. Likewise, unbinned measures only fit on y-axes, and thus 
only on matrix rows. F3 creates a 2x2 matrix if users combine views that encode such data fields. In 
the other extreme, F3 creates a 4x4 matrix if users combine views in which both axes in both views 
encode binned measures. 

If the two views encode the same dimension and level on the x-axis or the same measure on the y-
axis, then the views are incompatible and view matrix creation is not possible. If the two views are 
incompatible, F3 does not highlight the views’ corners when users drag the views onto each other. 

We designed view matrix creation to provide users with a shortcut to see combinations of two 
views. For example, in looking at distributions of costs and contacts across treatment groups and 

 

Figure 6.9. Trail cloning technique: An exploration trail can be cloned by holding onto a data bar in a parent 
view, while two-finger dragging a child view. 
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locations respectively, users might be interested in seeing the possible combinations of axis encod-
ings. Thus, they drag the views’ corners over each other, to obtain a view matrix (see figure 6.10).  

 

6.2.11 Combining the Interaction Techniques 
In combining the interaction techniques, many questions arose. Particularly: how should F3 behave 
if users attempt to clone a view with a parent, to configure a view with children, to filter a view with 
children, or to flick the dot of a de-aggregation? In the following, I will describe these considera-
tions. 

When users clone a view, F3 clones all parent links and no child links as part of the interaction tech-
nique. This permits users to clone views with children, to enable them to continue working with 
them, for example, by configuring their axes.   

When users drag a dimension onto an x-axis of a view with children, F3 does not highlight the x-
axis, thus indicating that it is not possible to drop the dimension onto the axis. This is not possible, 
because this would remove the visual representation of the filters in any child views. However, a 
fast workaround is to create a view clone, which allows x-axis configuration. 

When filtering a view with children, F3 also filter the child views. Similarly, when flicking the filter 
dot, F3 also reflect this in child views. This allows users to filter complex analyses after they have 
constructed a trail of views. For example, in looking at age distributions of pregnancy related treat-
ments (major disease code 14) in the capital region, users might want to see data for only spontane-
ous births. Thus, they use the create view and explore view interaction techniques to navigate the 
hierarchy of diagnoses to find the data bar for spontaneous births. They drop this data bar on the fil-
ter area of the first view in their trail of views. This results in filtering the entire trail for spontane-
ous births, which can be turned on and off by flicking the newly shown filter dot.  

When flicking the filter dot of a de-aggregation created by view exploration, the view simply shows 
all members at the de-aggregated level, thus allowing users to see more members in a view. For ex-

 

Figure 6.10. Drag view corners over each other to create a view matrix. 
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ample, in looking at number of patient contacts across years, users might want to see patient con-
tacts across months instead. Using view exploration by exploring a single year to obtain a view that 
shows months for that year, and then flicking the filter dot, shows months for all years in the data. 

6.3 Implementation and Apparatus 
We implemented F3 in Java using a combination MT4J [89] and the Prefuse data visualization 
toolkit [60]. Specifically, the Prefuse renderers where ported to MT4J where they generate and up-
date MT4J components. The data and data model were stored in an MSSQL server and MSSQL 
Analysis Services cube respectively. F3 query the data using Olap4J (www.olap4j.org). 

F3 work with different display sizes and touch systems. However, we conducted both of the studies 
that I describe in the following sections on a Smart 8084i display. Figure 6.11 shows analysts using 
this this display and F3 to explore age distributions of pregnant patients. The display has a spatial 
resolution of 3840x2160 (also known as 4k), a 30Hz refresh rate, measures 84 inches diagonally 
and supports four simultaneous touch points. An 84” display is sufficiently large to provide the ex-
perience of abundant display space, while it is still physically possible to move into busy offices 
and employees’ work area, which was necessary for the second of the two studies described next. 
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6.4 Study #1: Formative Laboratory Study 
The first study investigated usability issues and reactions from participants whom we asked to solve 
a range of data analysis tasks. The sixth row (lab study) in Table 6.1 shows this work. 

6.4.1 Participants, Data and Tasks 
We recruited nine participants (age: 27-57, mean 34). Participants were current or former Master-
level students. They all conducted data analysis on a regular basis. 

We used the rate foundation table that comprised nation-wide admissions, treatments, and expenses 
data for the years 2012 and 2013 as basis for the data cube that spanned 7 dimensions and 6 
measures. 

The tasks were developed from taxonomies of data analysis [21] and inquiries with the group of 
health care analysts (see section 6.1.1). I provide an overview of the tasks in Table 6.3. The first 

 

Figure 6.11. The photo shows how analysts using F3 to explore age distributions of patients admitted in relation 
to pregnancies. The photo shows: (1) they created an overview of treatments; (2) from this view, they explored 
treatment group 14, which relate to pregnancy and labour. This resulted in a view (not shown) showing different 
treatments of this group; (3) they reconfigured this view to show age distribution; (4) they explored the group of 
patients from 20 to 39 years, which resulted in another view; (5) they exploded this view by regions to under-
stand how age compared across regions, resulting in the long view centred on the display in the photo, which 
shows that women in the capital region are older when they have children, compared to other regions. 



Chapter 6: Paper III 

72 

four tasks were brief and asked participants to answer factual information. The next two tasks were 
longer and required several interaction. The last two defined tasks were complex tasks that required 
for example data comparisons. We deliberately asked participants to work on clearly defined tasks, 
even though the goal of F3 was to support data exploration. We chose this approach to ensure that 
the system was useful before deploying it in a field study. If time permitted, we asked participants 
as a final task, to first define a task on their own, and secondly, to solve it using F3. 

 

 

6.4.2 Procedure 
During the sessions, a facilitator and an observer were present in the room, besides a participant. 
The facilitator’s role was to keep the sessions on track and the participants at ease. The observer’s 
role was to observe and take notes. Both were allowed to ask questions. 

First, we introduced participants to the study and its goals. They gave consent to participate, and 
filled in a background questionnaire.  

Then, we asked participants to use the system, and to explore the interaction techniques. To assure 
participants understood and used the entire range of interaction techniques, we observed them 
closely in this phase and gave suggestions about what to try if they were in doubt. We encouraged 
participants to ask questions throughout the session. 

After we introduced participants to F3, we asked them to work with the tasks described above, one 
by one. We administered the tasks in writing. After each task, we asked the participants if they had 
any questions. If time permitted, the facilitator and observer asked questions, before moving onto 
the next task. 

# Description # of necessary  

interactions  

and difficulty 

1 How many patients were admitted to Herlev hospital? 2 (brief) 

2 How many 11 year olds were admitted? 2 (brief) 

3 What was the average age of patients admitted in the capital region?  2 (brief) 

4 How many patient were admitted in relation to labor and birth in total? 2 (brief) 

5 How many patients at 65 and older received plastic surgery at Odense University hospital 
(OUH)? 

6 (long) 

6 Which age groups gave birth by Caesarean section in 2013? 6 (long) 

7 Which hospitals had a high increase of plastic surgeries from 2012 to 2013? ~10 (complex) 

8 Which treatments types are cheaper on large hospitals than small hospitals in the capital re-
gion? 

~10 (complex) 

9 First, define a task on your own. Next, try to solve it. varied (complex) 

Table 6.3: Tasks for the formative study (study 1). 
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At the end of the session, we interviewed participants about their experience with the system and 
interactions, including its benefits and drawbacks compared to other systems they knew, and fol-
lowed up on aspects of their interactions or what they said during the session. 

The sessions lasted between 55 and 65 minutes. 

6.4.3 Data Collection and Analysis 
Participants were video recorded, and the facilitator and observer kept notes of usability issues and 
participants’ utterances. We also used the notes as basis for the interview described above. 

We analysed the collected data in four analysis sessions based on the Instant Data Analysis tech-
nique [84]. The analysis sessions, which we conducted within a day after participant sessions, lasted 
on average one hour. For the analysis, we gathered in front of a whiteboard. We transferred obser-
vations to sticky notes, fixed them to a whiteboard, and presented and discussed our observations. 
We then categorized the sticky notes into themes and clustered them on the whiteboard. Based on 
the clusters, we captured the most important findings with references to the observations and any 
supporting video recordings.  

6.4.4 Results 
First, I describe which techniques participants used. Then I present the results in terms of five topics 
that we observed across several participants.  

Use of F3’s Interaction Techniques 

All nine participants understood and used view creation, configuration, cloning, and exploration. 
Many participants seemed uncertain about the effects of the other techniques, both before and after 
we guided them through using the techniques. Only one participant actively used view matrix crea-
tion and no one used trail cloning. 

One participant quickly understood how view cloning would enable him to try out new approaches 
and strategies, which enabled him to perform a range of analyses in a rapid manner. 

Drilling Too Deep 

Seven out of nine participants drilled too deep (depicted in Figure 6.12). While reading off the 
value of a data bar might solve a task, participants instead dragged the data bar out of the view, thus 
creating a new view drilled down in the aggregate. This did not give them the answer to the task. 
Some participants merely stopped looking at or explicitly closed the child view, and read it from the 
parent view as required, while other participants got confused and either stopped to consider what to 
do, or alternatively, tried to manually aggregate data in the child view. 

Participants found F3 backwards when they wanted to isolate a member from one view in another 
view, aggregated by another dimension. F3 lets users do that by dragging out the data bar, (i.e., 
drilling), and then configuring the view with the needed dimension. For example, if participants 
needed to see a view filtered on a single hospital, they often created of view of hospitals, and then 
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dragged out the wanted hospital. This resulted in a drill-down on hospital, thus creating a view of 
wards on the chosen hospital. To see other aspects of the hospital, participants had to drag another 
dimension onto the x-axis, which they seemed to either not remember or understand. 

 

Combinations of User Interface Parts 

Some participants were unsure about possible combinations of user interface parts. They had under-
stood that it was possible to combine many elements, but it was unclear to participants, which par-
ticular elements that it was possible to combine. Consequently, participants tried to combine ele-
ments in ways that we had neither considered nor implemented. One participant, for example, tried 
to drag two data bars together, which F3 does not support. When we asked the participant what she 
expected the result of the action to be, she suggested that it might show both data bars in a view. 
Two participants also tried to drag a view to another views’ explode area, which they seemed to ex-
pect to result in exploding the view by data bars in the dragged view. 

It seemed that some participants did not consider what they were dragging, but only where they 
dropped it. For example, a participant dragged a data bar over many parts of the user interface while 
thinking, reminding of Dwyer et al.’s “thinking with their hands” [38]. 

Default Axes 

Default axis selection seemed to create some confusion when participants had created views. It 
seemed they were not aware of the default choice, but only realized it when they needed to solve a 
task that required them to select another measure. 

Data Exploration 

Two participants suggested that F3 would be a good tool for exploring data. A participant that had 
obtained a particularly good grasp of the different possibilities considered two ways a data explora-
tion could progress: He could create consecutive child views by drilling and reconfiguring, for ex-
ample to see data for people above 65 that had plastic surgery performed at a specific hospital. This 
would leave a trail of the exploration process. Alternatively, he suggested creating three views that 
showed age groups, treatment types, and hospitals. He would then drill on one of these views, and 

 

Figure 6.12. Many participants drilled too deep. This figure shows an example of this. For example, if we asked 
participants to find the amount of patient contacts at the hospital “Riget”, they drilled further into the “Riget” data 
bar than necessary. This led to a view that showed the wards at “Riget” and thus confused participants, be-
cause they reached a level of detail higher than necessary, and could neither read the result or continue interact-
ing in a sensible manner. 
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later filter the resulting view using the other views. The result would be identical, but the process of 
getting there, and the layout and relations between views, would be radically different. 

In contrast to this, a participant said that she was used to seeing more information in a single view. 
She thought it weird with so little information in each view, but so many views. In addition, this 
participant suggested that the system was too visual, and that she would rather conduct her analyses 
by programming and looking at data tables. This repeats findings by Kandel et al. [82]. 

Experience 

Many participants found F3 useful and efficient, in spite of their confusion. Two participants said 
that F3 provided playful interactions. In the debriefing, they considered how they would analyse 
their own data with F3. One participant described F3 as “simple charts, fast”. Another participant 
emphasized the speed at which she was able to conduct analyses with F3. On her way out the door, 
one participant said “bye, bye. It was fun to play…”, which stressed the experience that she had had 
with the system. In contrast, a participant that had many problems using F3 said he “lacked the ap-
petite” for using it. 

6.4.5 Summary 
Participants in the lab study used all of the interaction techniques, except for trail cloning and view 
matrix creation. We expected that part of the reason that no participants used two of the techniques 
were that they did not have enough time with the system, and that the tasks we asked them to solve, 
were so simple that using them was unnecessary. An alternative explanation is that they were too 
complex. We expected the second study to shed more light on this. 

The issue of drilling too deep occurred in almost all lab sessions. It is evident that some aspect of 
F3 caused participants to drill too deep. However, we were in doubt about the reason for partici-
pants’ behaviour, and were curious to find whether the second study could provide further explana-
tions. 

It was also clear from the study that many participants formed a mental model of the possibilities 
for dropping data bars on views, which were different from what we intended with F3’s design. It 
was encouraging that participants acquired the conceptual drag and drop model, but clear that they 
understood it slightly different and that F3’s feedback needs improvement. 

Finally, many participants emphasized the explorative approach to data analysis provided by F3’s, 
and described the experience of using it as fun or fast. 

Next, I describe a field study of F3, which shed further light on some of the described issues.  
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6.5 Study #2: Field Study 
Where the first study sought to evaluate the usability of the interaction techniques, the second study 
focused on how the health care analysts described in section 6.1.1 would use the interaction tech-
niques as an integral part of their work. The study aimed to understand how F3 support data analy-
sis tasks that span hours or perhaps days and that involve data exploration. We based the study on 
real data and tasks that potentially involved many analysts. The duration of this study allowed us to 
understand the benefits of one interaction technique over another, and to understand how analysts 
can use F3’s interaction techniques creatively to explore data, uncover new understanding, and gain 
insight. 

The seventh to ninth row (deployment study) in Table 6.1 shows this work. 

6.5.1 Deployment 
We deployed the 84” display and F3 in the offices where the analysts worked during two regular 
workweeks. Initially, we installed the display in an office shared by two employees and an external 
consultant (first location). Few employees used the display in that location. We believe that the lo-
cation seemed too personal to employees that did not work in the office, and did not allow people to 
step back from the display to gain overview. Therefore, after four workdays, we moved the display 
to a small room that employees regularly used for impromptu stand-up meetings and that more peo-
ple passed during their workday (second location). Aside from the display, there were two tall café 
tables in the room. In this location, a more varied group of people used F3. Moving the display cre-
ated new interest, even from those had been sitting near the first location. The display remained in 
this location for the remaining six workdays. During the entire period, we expect that about twenty 
people have interacted with the system. The seventh and eighth row (deployment study) in Table 
6.1 shows twenty participant squares. Three of these are dark grey and three black. These six ana-
lysts used the system for more than half of the time. The three black squares represent participants 
that we interviewed on the last day of the deployment. In total, 907 views were created comprising 
all F3’s techniques. 

6.5.2 Data Collection 
To obtain a satisfying understanding of how the analysts used the display during the deployment, 
we based data collection on triangulation: We logged user interactions, captured screenshots at 5-
second intervals, and recorded audio during system use. In addition, we visited the deployment site 
at least once every day for one to six hours to make sure the system was being used, to observe the 
use, to conduct interviews, and to resolve technical problems. We kept field notes while on-site. Im-
mediately after leaving the site, we logged short audio memos to describe our observations from the 
visit. Our inquiries with the group of analysts over the past three years provided further context to 
understand F3’s use in the broader context of their work. In addition, we used the visits to gather 
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requests for features or updates to the data model. These requests were actively encouraged, to cre-
ate pull from the analysts. Finally, we conducted interviews with three key analysts at the end of the 
deployment period (see Table 6.1). 

6.5.3 Making Sense of the Collected Data 
Analysis was informed by Grounded Theory [139]. Carpendale [26] and Isenberg et al. [71] advo-
cated for using Grounded Theory to analyse qualitative study data in InfoVis. We continuously 
moved from the field to the data and back again, reformulating our coding and questions, thereby 
gaining understanding of the way the analysts used F3. The collection and analysis of data also 
served to address deployment issues. 

At the end of the deployment, we gathered all data to obtain an overview: We transcribed observa-
tion audio memos, and along with notes from interviews and observations transferred these to sticky 
notes to facilitate affinity diagramming.. We used the sticky notes as entry points for further anal-
yses of screenshots and audio recordings to provide additional detail when necessary. Some notes 
specifically suggested returning to the audio material to obtain greater insight, which resulted in 
adding new data to the affinity diagram. We only used interaction logs to describe the extent of F3’s 
use during the deployment, because the logs contained noise caused by our presence at the site of 
deployment. For example, we caused noise by suggesting analysts which interaction techniques to 
try and by our own interactions with the system. The final part of analysis condensed seven themes, 
which I describe next. 

6.5.4 Field Study Results 
I present the results in terms of seven themes.  

Use of Display Space 

The health care analysts used the entire display to lay out views, although they first and most used 
the left-centre area. The analysts never positioned views such that they extended towards the top 
border. A few views extended the left or right border, such that most of the view remained visible. 
On one occasion, the analysts positioned views extending below the display, to store unused views. 

Interaction Techniques and Data Model 

During the two weeks of deployment, the analysts used all of F3’s interaction techniques, except for 
trail cloning and view matrix creation (similar to the lab study). 

The analysts requested many additional features from F3 during the deployment. We logged feature 
requests, but chose not to provide any of them, which would potentially alter the system dramati-
cally. The most common requests were to provide view scaling to show more data bars in a view 
and provide additional visualization techniques (e.g., scatterplots). The analysts also frequently 
asked for general process and provenance [61] support in F3 (e.g., annotate, record, share, desktop 
integration). More rare requests centred on the visualization and interaction techniques provided by 
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F3. The analysts wanted visualizations to: show several measures in bar charts next to each other; to 
allow analytical abstractions (e.g., show the difference of two views); and to show stacked bar 
charts. The analysts asked for interaction that focused on views. For example, to be able to undo ac-
tions, drill-up and down, and filter, all within a single view. Aside from within-view interactions, 
the analysts wanted to be able to create a new view with a single data member (i.e., a filter) by 
dropping a dragged data bar on the canvas similar to view exploration, but without drilling, to be 
able to select a few aggregates to continue exploring. This shows that what normally was an effec-
tive technique, seemed to limit participants in some circumstances. An analyst described the diffi-
culty in removing a single member from a view. We designed F3 to show all filters explicitly 
through view relations. We therefore chose not to provide a simple technique for this. Instead, users 
can use view exploration, followed by inverting the relation. Although this solution is more compli-
cated than what the analysts asked for, it helps to understand the filters applied to data. 

The analysts requested many updates to the data model. For example, we added 14 new dimensions, 
thus resulting in 21 dimensions at the end of the deployment period. These requests illustrate the 
analysts’ motivation for using the system – they were eager to use F3, and to use it for more than 
they could without updates to the data model. 

The analysts also requested updates to the data model that we chose not to provide. Particularly, the 
analysts asked to derive a new dimension from two existing. We showed them that they would be 
able to use F3 to combine aggregates from the two dimensions to obtain a similar combination, and 
thus opted to let them explore this possibility instead. From this, they were able to identify errors in 
data received from a specific region. 

Exploration of Data 

Quick insights: After an analyst had discovered what seemed to be an important data error in a 
matter of seconds with F3, he estimated that it would take 30 minutes to conduct a similar explora-
tion with their current practice. When asked to compare the current analysis practice to using F3, he 
said “[F3] is more playful, the leap from thought to action and result is shorter”, and that “there 
are fewer steps involved”. When F3 crashed (which it did on occasion), he said that he “was forced 
to remember what he had done” which showed that, although the fast and fluid properties had 
helped him to perform analyses quickly, remembering what he had done was difficult. F3 would 
have helped him in this regard by showing views’ relations, but when it crashed, it clearly demon-
strated the support given by showing those relations. This shows that he used F3, without thinking 
consciously about how he approached the exploration. He also stated that, “our current practice 
also leaves more flexibility [in terms of how we can perform analyses]”. Another analyst described 
working with F3 as “impromptu analyses in data”. She described F3 as quick to provide results, as 
visual (as opposed to looking at tables in SAS), and as flexible, in that dimensions and measures 
can be the combined simply by drag and drop. 

Problematically playful: The playful quality was problematic in some circumstances. In some 
analyses, it was clear that analysts were too fast, without keeping their goal in mind, and drilled too 
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deep (as in study #1) into a slice of the data set. It seems that keeping a mental overview, while 
playing and exploring the data was problematic for the analysts. One analyst thought that it was “a 

bit harder to keep the overview, because it is so easy to drag something new in, whereas if we are 
programming it, we typically plan what we want to do beforehand. Here, you typically drag some-
thing to see: how does that look? Is it something to proceed with, and otherwise you close and con-
tinue”. 

Difference to current practice: The analysts described the difference between their current prac-
tice and using F3 in terms of how they find errors in data: “You don’t sit and play with the data. 
Most often, you’re looking for something specific.” This showed that the fast and fluid properties of 
F3 provided the analysts with new possibilities for exploring data, and find anomalies or errors, that 
they were unable to find easily otherwise. Another analyst further commented that seeing the con-
text of a task with more data was useful, and increased her awareness of the task. The analysts liked 
how F3 helped constructing new hypotheses in their analysis by supporting exploration of data. One 
analyst said: “[F3] is good for getting ideas. Ideas that should be looked into”. Here, ideas covered 
data errors and other things that the analysts would like to correct. 

We attributed the playfulness of F3 to the fact that it is easy to experiment, create new views ad 
hoc, and possibly close them again if necessary. In short, getting from idea to action is fast, and any 
action is easily reversible, which both promotes experimenting and playing. 

Visualizations of Data and Relations 

The analysts liked that F3 showed data visually, but also commented that they were not used to see 
data that way (the analysts primarily use data table representations when looking at data). An ana-
lyst said that she had to “get used to seeing data visually” – which she described was hard for her. 
At least five analysts repeated this sentiment in various forms. They did see the value in the visuali-
zations, but some also used the textual representations of aggregate values that F3 showed when 
tapping a data bar. This seemed to reduce misreading visualizations, for example by facilitating a 
sanity check for scaling similarity in compared views. 

The analysts liked the way that F3 visualizes the relations between views. One analyst for example 
said: “I can obtain an overview of how the views are created”. We suspected that these representa-
tions helped participants understand F3’s feedback during interaction, but have no empirical evi-
dence for this. 

Views as Toolboxes 

In F3, we noticed that some participants used views as tools. I call these toolbox views. They are 
views that users create, only to be able to drag data from the views to filter other views, which have 
the users’ focus. Toolbox views bring little value except for helping other exploration steps. The 
ability to use toolbox views in F3 is unique, in that auxiliary views make use of the abundant dis-
play space. With less display space, using toolbox views would seem like wasting pixels. 
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An analyst that was quick to grasp the idea of using views as tools said: “You just have to turn it 
up-side down in your mind”. Most of the other analysts seemed to find it difficult to use views as a 
tool in exploration, and seemed to forget the approach. However, as one analyst said: “If you are 
looking into a specific problem, seeing the context is important”. In this statement, the context was 
a view, and the object of interest a data bar dragged from the view.  

Collaboration 

The analysts considered using F3 in collaborations with peers on-site. They experienced such col-
laborations during the deployment and thus considered how F3 could become a permanent part of 
their work. For example, an analyst said that using the display during analysis meetings would facil-
itate answering of open questions straight away during meetings, supported by F3’s simple and fast 
interactions. In contrast, current analysis meeting practice is to present data and analysis problems, 
note questions and comments, and return to their desk after the meeting to continue their analysis 
based on the received questions and comments, as outlined in section 2.1. This suggests F3’s value 
in internal collaboration. The analysts also described how F3 invited for discussions about data. One 
analyst said that collaboration between several analysts helped generate analyses and ideas, and that 
it was easier, more fun, and less error prone than doing it alone. 

The analysts also frequently considered using F3 for communications with external collaborators 
such as clinical societies, policy makers, and regional healthcare professionals. For example, when 
two analysts showed F3 to a group of collaborators from a university hospital, they collaboratively 
discovered a data error. An analyst suggested that F3 could improve the process of collaborating 
with clinical societies. She imagined that instead of endless series of meetings and email exchanges 
that take the form of negotiations, using F3 could facilitate collaboration, increase mutual under-
standing of complex issues, and help to arrive at conclusions faster. 

The Health Care Analysts Obtained New Insights 

During the study, the analysts found three potential data errors, which they added to a list of con-
cerns. According to the analysts, this was much more than expected. For example, they discovered 
that the average amount of bed days for a region was four times higher than other regions. They hy-
pothesized that the region had conducted incorrect registrations, conducted registrations according 
to an old standard, or that an internal process had failed to remove parts of data that were irrelevant 
for later analysis. We inquired if and how finding the potential data problems was due to F3. The 
reasons most often attributed to finding errors, was the speed of data exploration with F3, and that 
they could collaborate efficiently in the process. 
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6.6 Discussion 
I have presented F3, a system that implements a selection of interaction techniques that (a) use 
touch to create and combine visualizations and (b) work well with abundant display space. Next, I 
discuss the interaction techniques in F3, the two complementary empirical studies of F3, and limita-
tions/future work.  

6.6.1 Benefits of Interaction Techniques in F3 
In designing F3, we wanted to enable users to touch, drag and drop as many visualization elements 
and data fields in the user interface as possible. Participants liked being able to drag things out of 
views and generate new views. Our studies suggest that this could be due to the direct mapping be-
tween what they saw, what they did, the reaction they obtained, and how F3 represented this visu-
ally with links. I believe this a key strength of the interaction techniques used F3. However, we also 
observed some participants’ uncertainties about component mappings in study #1, which later in-
quiry confirmed. There are two takeaways from this: First, participants formed conceptual models 
of where data fields and aggregates could be dropped, and assumed that other parts of the interface 
worked similarly. A guessability study might provide the necessary information about the additional 
possibilities for a redesign. Second, the feedback provided by F3 should be improved to give more 
clear information of where data fields and aggregates could be dropped. 

I believe F3 allows users to create many views easily, thereby making use of the abundant display 
space. While this follows suggestions from earlier work (e.g., Paper I described in Chapter 4), I ar-
gue that several of the interaction techniques in F3 are novel in this regard. The empirical work sug-
gests that some of the interaction techniques (e.g., view cloning, exploration, filtering, and explod-
ing) were easy to understand and useful. These techniques helped participants think and execute 
complex data explorations quickly, some of which took hours of trial-and-error in their current sys-
tem. While some of these would have benefitted from any kind of visualization, I believe that the 
aggressive creation and expansion of visualizations in F3 is the key benefit. 

6.6.2 Too Fast, Fluid, and Flexible? 
Our empirical results have shown that participants in both studies were able to perform fast analyses 
and combine different attributes, supported by F3’s interaction techniques. However, some results 
also indicated problems. I speculate if our design goals partly caused the observed problems, and 
whether such effects can be observed with other systems. 

Participants’ confusion about automatic selections in the first study is a direct result of our design 
choice. We deliberately opted to prepopulate undefined axes to present data as fast as possible. Par-
ticipants also drilled too deep. Could the focus on fluidity and never-ending interactions cause users 
to keep interacting, instead of reading the obtained result? 

Participants’ uncertainty about how to proceed with a complex data exploration in the first study 
might result from our design choices. The order in which users can perform data exploration opera-
tions with F3 provides flexibility (e.g., toolbox views). However, this flexibility might also cause 
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inexperienced users more uncertainty and confusion. We had designed for this flexibility, but ob-
served that some novice users had difficulties planning and executing analyses, potentially due to 
these choices. 

6.6.3 Empirical Studies of F3 
The results of the studies suggest that users were able to use the techniques to perform data explora-
tion and found them useful. I can think of only few studies showing such findings in a field study. 

The laboratory study identified concerns such as too much drilling, which largely were unimportant 
in the second study. One reason for this was that the analysts in the second study had much longer 
time to learn to use F3, and to apply the techniques to perform data exploration as part of solving 
their analysis tasks. 

I want to discuss briefly our choice of methods. Empirical work is scarce in the related work. At 
least a part of this reason is that large touch displays has only recently become available. Another 
reason for the lack of empirical work is that it is difficult to establish good collaborations with ex-
perts that are motivated to use research prototypes. In addition, information visualization research 
has only in the last decade begun to use empirical studies as a crucial evaluation method [72, 88].  

I acknowledge that it is difficult to separate the effects of the specific system (F3) from the general 
technology (large display visualizations) in field studies such as the reported. However, I believe 
that the field study showed that F3 enables collaborative data exploration in a manner and effi-
ciency that other systems do not support. For example shown by the fact that external collaborators 
were able to take part in exploring data with F3. 

6.6.4 Limitations 
F3 is limited by supporting only bar charts; we prioritized instead to make it work with large-scale 
data that could be used in a field setting. Support for alternative views was a common request from 
participants in both studies. Many of the interaction techniques can easily be applied to other visual-
ization techniques, for which there are plentiful [59]. Selections in scatterplots may also be designed 
such that they facilitate dragging them out of a view, to isolate in another (e.g., like selections in 
[122]). Some of the interaction techniques may well be more useful with other visual representa-
tions. For example, other work has shown that scatterplot matrices are extremely valuable for some 
tasks, and thus matrix view creation may thus be more effective with scatterplots.  

6.7 Summary and conclusion 
In designing, implementing and evaluating F3 and the interaction techniques that it is based on, we 
showed the value of combining information visualization, large displays, and touch interaction, to 
support collaborative data exploration. 

The field study showed analysts’ ability to use F3 to perform exploratory data analysis, and obtain 
insights more quickly than they were accustomed to with their current tools and systems. 
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Many issues are still open, many questions unanswered, and more research needed. Specifically, the 
discussion above have outlined questions that we cannot answer from the evaluations we conducted. 
Specifically, I speculate if we might have taken our focus on providing fast, fluid, and flexible inter-
action techniques in designing F3 too far. 

As part of designing F3, we became aware of the importance of showing views’ relations. In F3, we 
showed this using links between data bars and filter dots. This awareness led to considering other 
visualization techniques for showing relations between views. In the next paper, we explored the 
possibilities for showing relations between views more generally. 



 

 

 



 

 

 

Chapter 7 
Paper IV 
Representing View Relations: A Qualitative Study on Between-
View Meta-Visualizations 
S. Knudsen & S. Carpendale 

Abstract – To improve our understanding of the use of meta-visualizations to help explain 
view relations, we conducted a qualitative study in which we invited people with experi-
ence in both visualization and interaction design to work with, discuss and sketch represen-
tations of view relations. Because data analysis based on visualizations frequently involves 
creating and navigating many visualization views, it is becoming important to develop 
ways to keep track of how one visualization view relates to another. The pressure to find 
effective solutions for representing the relations between views is being fuelled by the in-
creasing prevalence of large, high-resolution displays, which provide more space for multi-
ple views and view organization. However, the simple increase in display size does not in-
herently provide the additional analysis support that may be needed. Between-view meta-
visualizations may help to address this need by offering methods that can reveal relations 
between views. Through our exploration of the possibilities for showing between-view re-
lations, we discovered several factors such as the data itself, the parts of the data that are 
shown, the flow of data, the encoding of data, the view coordination, and the interactions 
that can be used as part of meta-visualization representations. Our results, together with 
existing research, form the basis of a six dimensional framework that expands the range of 
possibilities of between-view meta-visualizations. 

My contributions to Paper IV 
I identified the research problem of understanding relations between views based on in-
sights from a study I conducted on a basic version F3 (see Table 6.1, rows 4 and 5), which I 
described in the previous chapter. Professor Sheelagh Carpendale contributed revisions to 
the problem and study design. 

I carried the main responsibility of data collection by implementing the design scenes, run-
ning the study sessions, and subsequently analysing the collected data, all of which are de-
scribed in the following. Professor Sheelagh Carpendale contributed to data analysis 
through verbal and textual discussions.  

I wrote the first draft of the paper and drew all figures. Both Professor Sheelagh Carpendale 
and I contributed with subsequent revisions to the draft.  
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In the fourth paper, we wanted to explore potential relations between visualization views and the 
possibilities of representing these. 

I was specifically inspired by: 

1. The way, in which participants in the study described in Paper I had shown visualizations’ 
relations with trails of thought (see Chapter 4). 

2. The process of designing and evaluating F3 in Paper III (see previous chapter). Specifically, 
the issues I observed in the small informal lab study of F3 (see Table 6.1, rows 4 and 5) and 
the eventual design choices for F3. 

3. My collaborator’s previous studies [29, 143] and other related work (e.g., [37, 80, 79, 130, 
151, 158]). 

The aim of our work was to improve our understanding of view relations, and their possible repre-
sentations. These require definitions: 

A View is a bounded area that has its own use of spatial organization that displays any variations of 
datasets and their representations. View boundaries may be represented visually using borders, 
backgrounds, or similar techniques. 

A View relation is a property shared by two views, which for example include data, the way the 
views show data, or the way users created the views. 

A Representation of a view relation is a meta-view visualization that indicate a view relation. Thus, 
such representations often cross views’ boundaries, or use visual variables to show views’ relations 
on top of views. 

To improve our understanding of view relations, and their possible representations, we conducted a 
qualitative study in which we invited people with considerable experience in both visualization and 
interaction design to work with, discuss and sketch representations of view relations. Rather than 
designing, implementing, and testing one single possible design (as I had done in the work of F3, 
which I described in Chapter 6), we chose to study the range of possible meta-view visualizations. 
The aim was to expand our understanding of meta-visualizations in visualization and interaction de-
sign. To do this, we developed many alternative designs, and implemented them as low fidelity pro-
totypes. The prototypes allowed us to present several ideas to participants and run a review of these 
designs. We were interested in the participants’ interpretation of the relations represented in the de-
signs, which relations they found sensible and useful, and other designs they might imagine. This 
allowed us to gain knowledge of the strengths and weaknesses of the view relations and their repre-
sentations. 

7.1 Methodology 
We conducted 10 sessions that lasted approximately 1½ hours and consisted of three phases: Brief-
ing, design review, and de-briefing. The first and last phases merely set the frame for the design re-
view, which I describe briefly in the following. 
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In the design review, participants worked with seven scene designs on an 84” pen and touch display 
[169]. The scenes consisted of visualization views and between-view relation representations. Some 
scenes captured ideas from related work, while others were novel. Scene 1 and 5 were inspired by 
GraphTrail [37], scene 2 by VisLink [29], scene 3 by DragMag [158], and scene 4 by Lark [143]. In 
contrast, scene 6 was based on the idea of considering legends in relation representations, and scene 
7 on the idea of showing meta-data in separate views. Figures 7.20 to 7.26 show screenshots of the 
seven scenes. We did not intend to produce faithful reproductions of the related work, but rather 
aimed to use the scenes as conversation catalysts. The goal of offering many alternatives was to al-
low participants to compare ideas and to provide variability to the study [144], thus inspiring partic-
ipants to come up with their own ideas. 

The design review consisted of two parts: A and B. In both parts, participants worked with the 
seven scenes. During part A, participants reviewed our relation designs. During part B, we only 
showed participants the views, and asked them to come up with their own relation representations. 
To identify study bias, we chose to divide the participants’ sessions in two: we conducted half of the 
sessions in AB order, and the other half in BA order. 

We recorded audio and video of the sessions. We also recorded screen captures in five-second inter-
vals to collect participants’ sketches. After conducting the sessions, we analysed the recorded mate-
rial based on a grounded theory approach [71, 139]. Although we initiated the study with some 
ideas of what to look for (based on related work [29, 37, 80, 79, 130, 143, 151, 158]), we also 
looked for new ideas and concepts while analysing the gathered data. As part of analysing the data, 
we used open coding, from which we developed a set of thirteen concepts. These concepts worked 
well to convey the range of thoughts and ideas that participants expressed. We used these concepts 
as a basis, combined with related work, to assemble a framework composed of six different dimen-
sions of view relations. We did this to provide concrete, practical suggestions of what to consider, 
from the perspective of designing and evaluating concrete meta-view relation representations. 
Whereas many of the concepts concerned the visual properties of meta-representations that partici-
pants considered, the dimensions consider properties of the views’ relations in themselves, which 
designers may choose to show with different visual properties or techniques.  

Table 7.1 provides an overview of the methods used in the study. Next, I provide an overview of the 
findings in terms of the framework.  

Table 7.1: Overview of study methods. 
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7.2 Framework and Findings 
The framework consists of six dimensions of view relations and their representations: design intent, 
visual components, re-use of view representations, direction, strength, and interference with views. 
Figure 7.19 shows the dimensions and depict related work in terms of the framework. I describe 
each framework dimension in the following. 

7.2.1 Design intent 
Design intent considers what the purpose is of showing a relation representation and relates to how 
designers aim to support data analysis. Design intent describes the designers’ perspective. Thus, a 
design may be useful for other purposes than what the focus of the design was, and a single design 
may cover more than a single design intent. We used the word intent because intent captures a de-
sign’s idea, rather than what it enables. In the following, I describe five design intents of showing 
relations: 

Data relations intend to show the relation between data present in 
two views, conveying which data is affected using different visu-
alization techniques, choices of encoding, or data processing. Ex-
amples of showing data relations include using colour similarly 
in two views and linking data points across views (e.g., [29, 130, 
151]). Figure 7.1 shows an example of representing data rela-
tions. 

 

Process relations intend to show how data has been processed or 
transformed between two views, e.g., through filtering, aggregat-
ing, deriving, or any other process. Lark [143] and ExPlates [80] 
showed processing explicitly with lines connected to views. 
GraphTrail [37] used line connections, but was not explicit in 
how data had been processed between views. Figure 7.2 shows an 
example of representing process relations. 

 

Encoding relations intend to show the data encoding differ-
ences or similarities between two views, e.g., by using high-
lighting or connecting axes, or connecting legends. In Lark 
[143], views’ encoding relations were shown explicitly 
through the InfoVis pipeline representation. Figure 7.3 
shows an example of representing encoding relations. 

 

 
Figure 7.3. Showing encoding relations. 
The views’ y-axes encode the same at-
tribute with different scale. The red high-
lighting shows this. 

 
Figure 7.2. Showing process rela-
tions. The view on the right is a fil-
tered version of the left, which is in-
dicated by the line arrow. 

 
Figure 7.1. Showing data relations. 
The two views show the same data 
points. The line connections show 
this relation. 
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Interaction relations intend to show how views relate based 
on people’s interaction with views, e.g., by having used one 
view to create another or by whom created or positioned a 
view. GraphTrail [37] and ExPlates [80] used interaction re-
lations to show analysis history. Lark [143] also showed in-
teraction relations. Here, the intention with was to support 
collaboration. Figure 7.4 shows an example of representing 
interaction relations. 

Coordination relations intend to show how views are coordi-
nated, e.g., by brushing and linking techniques. I am not 
aware of any work that shows coordination relations explic-
itly, but Lark shows coordination implicitly through the visu-
alization pipeline [143]. A participant in our study suggested 
these relations might be experienced through interaction 
(e.g., brushing). In Paper IV, we suggested that showing co-
ordination relations explicitly might be useful in contexts 
where many people use many views. Figure 7.5 shows an 
example of representing coordination relations. 

Intent can be multi-faceted: a relation representation that shows data relations may also show pro-
cess. For example, if a view shows a subset of data points from another view and the data points are 
connected, then the relation shows both data and process. Figure 7.6 shows this example as well as 
other multi-faceted relation representations. 

 

The dimension arose from the analysis of the study data. The data showed participants’ varied con-
siderations about tasks that view relation representations support. This supports the choice of con-
sidering design intent as part of the framework. One participant for example considered: “if you 

want to follow a specific country, then this relation, in that case is more important. It completely 
depends on the context”. Other concepts that emerged from our analysis supported the division of 
design intent. For example, we identified axis relation, legend relation, and interaction concepts. 
We mapped the first two concepts to encoding and the last concept to the interaction and coordina-
tion design intents.  

   
(a) Data and process 

 
(b) Data and encoding (c) Encoding and process 

Fig. 7.6. Examples of multiple design intents. (a) and (b): intent to show data relations in that the meta-visualiza-
tion shows the location of data points in both views. (a) and (c): intent to show process in that the meta-visuali-
zation indicates a relation between a subset of data. (b) and (c): intent to show encoding relations, in that meta-
visualization shows relations between the views’ encoding (the axes).  

 
Figure 7.5. Showing coordination rela-
tions. Views to the left are coordinated, 
shown by the grey area. 

 
Figure 7.4. Showing interaction. The view 
to the right was created from the other 
view. This is shown with the thick line 
connection. 
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7.2.2 Visual components 
Visual components delineate the different components that designers can use in showing view rela-
tions. We ordered these in a three-level hierarchy: 

Data components comprise visual marks that represent data: points in 
scatterplots, bars in bar charts or rectangles in treemaps. VisLink [29] 
showed relations between data components. Figure 7.7 shows an example 
of showing relations between data components. 

 

Meta-data components comprise factors included in the visualization to 
help with readability such as axes, legends, and grid lines. For example, 
Classen & Wijk [28] showed relations between views’ axes (meta-data 
components). Figure 7.8 shows an example of showing relations between 
meta-data components. 

 

View components comprise factors that contain and separate the view 
from the rest of the display such as view borders, corners, background, 
and title. ExPlates [80] showed line connections between views’ borders. 
Figure 7.9 shows an example of showing relations between view compo-
nents. 

 

Different component levels might be involved in showing relations between two views. For exam-
ple: Semantic Substrates [130] showed relations between a data points (data components) in a rec-
tangle (meta-data component) that referred to axes in a view, to data points (data components) in 
another view. GraphTrail [37] showed line connections between views’ borders (view components), 
while the colour of the line mapped the selected data in views (data components). Figure 7.10 
shows these examples. 

 

  
Semantic Substrates [130] 

 
GraphTrail [37] 

Figure 7.10. Literature examples of using different components to show views’ relations. 

 
Figure 7.7. Showing data 
to data relations. 

Figure 7.8. Showing meta-
data to meta-data rela-
tions. 

Figure 7.9. Showing view 
to view relations. 
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The dimension arose from the analysis of the study data. The data showed the study participants’ 
varied uses of visual components to show view relations. Figure 7.11 shows examples of these vari-
ations. For example, in Figure 7.11c, a participant considered how to show an overview plus detail 
relation between two line plots, and suggested to connect the line start and end points in the detail 
view.  

 

 

  

   

a: 1 (3) 
Data and meta-data components 

 

b: 2 (5) 
Data components 

c: 3 (0) 
Data components 

  
d: 3 (2) 

Meta-data components 
 

e: 4 (8) 
Meta-data and view components 

f: 5 (8) 
Data and view components 

   
g: 6 (7) 

Data and view components 
 

h: 6 (8) 
Meta-data and view components 

i: 7 (2) 
Data and meta-data components 

Figure 7.11. Participants’ sketches showed varied uses of visual components to represent view relations. The 
text below each subfigure indicates the occurrence of sketches as “subfigure: scene (participant)”. 
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7.2.3 Re-use of view representations 
Re-use of view representations captures how designers may use data encodings within views in rela-
tion representations. For example, a line connection between two views can use the views’ internal 
colour encoding to colour the lines. Similarly, a bar in a bar chart may be divided into a stacked bar, 
thereby using the spatial layout of the bar chart to make it easier to understand a relation to another 
view. 

We denote relation representations that re-use views’ representations as consistent with the views’ 
visual encodings. Lines coloured similar to the data points they connect are consistent with the 
views’ visual encodings. Likewise, we denote relation representations that use the views’ visual en-
codings to convey separate information as inconsistent. Lines representing view to view relations 
that are coloured similar to data points in the views are inconsistent. While we are not aware of 
work that focuses on re-use of view representations, some systems use the idea. For example, 
VisLink [29] and Elzen & Wijk [41] used colours within views to colour lines between views, while 
ConnectedCharts [151] used the position of data points to anchor relation lines to axes and chart 
edges. Figure 7.12 shows these examples. 

 

In contrast to the rare consideration of this dimension in related work, the study participants fre-
quently considered re-using within-view representations. For example, participants re-used colours 
of linked data points for colouring the links (see Figure 7.11b), connected data points in one view to 
positions within data bars in another view (see Figure 7.13a), and used line end points to encode 
specific data values on vertical axes in both views (see Figure 7.11c). Additionally, they merged 
lines from multiple legend items and connected these to data bars in other views. This allowed line 
thickness to represent the fraction of the data bar indicated (see Figure 7.13.b) to “encode more in-
formation”. 

  
 

VisLink [29] Elzen & Wijk [41] ConnectedCharts [151] 

Figure 7.12. Literature examples that re-use visual encodings within views’ to show relations between views. 
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7.2.4 Direction 
Direction of relations captures that view relations can be can be directed or undirected. If source 
and destination views exist, the meta-view representation may show this. For example, an arrowed 
line may connect a source view to a destination view [167], views’ position may show direction 
(e.g., using reading order) [11, 24], or a line may connect the right side of a source view to the left 
side of a destination view [80]. Similarly, views’ component hierarchies may show direction. For 
example, a line from a data bar to a view show direction implicitly. This suggests that representa-
tions of directionless relations might focus on showing relations between components at the same 
level of the component hierarchy (i.e., data to data, meta-data to meta-data, or view to view). 

 

Many study participants considered the direction of views’ relations. We observed this from partici-
pants’ verbal considerations, their gesticulations, and their sketches. Examples include considering 
that some marks “make you read the visualization in a specific order”; stating “I am reading it left 
to right, top to bottom” while arranging views; or stating “so this takes that data over there [pointing 
with both hands]”, and showing with hand gestures how views connected, suggesting that the visu-
alization was “trying to tell a story”. Many participants indicated directions explicitly by sketching 
arrows. For example, they drew these between data bars and legends. Here, participants suggested 
these showed less direct connections between data in the two views. Figure 7.15 shows examples of 
such sketches grouped according to the different aspects of indicated relations (a-g: de-aggregation, 
h-k: aggregation, l: filtering, m: zooming, and n: encoding similarity). The figure shows disagree-
ment between arrow directions. For example, some participants drew arrows leading to, while other 
participants drew arrows leading from, de-aggregated views. 

 
 

a: 2 (5) b: 2 (0) 
 
Fig. 7.13. Examples of participants’ re-use of within-view representations. The text below each subfigure indi-
cates the occurrence of sketches as “subfigure: scene (participant)”. 

  
PanoramicData [167] Explates [80] 

 
Figure 7.14. Literature examples of showing directions of relations between views. 
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7.2.5 Strength 
Strength of relations captures that view relations can vary from weak to strong. Relation representa-
tion can show this. This dimension is similar to the notion of edge weights in graph data. Strength 
may comprise both negative and positive values, thus implying that representations may show that 
two views are related or unrelated, for example to show that two views that look similar are actually 
different. Any relations between views can influence how to show strength, such as interactions 
with the system (e.g., brushing, proximity data, and user profile) and the visualized data (e.g., 
amount of common data points). Additionally, combinations of relations can be part of numerical 
computations of strength, which visual representations can show directly. Alternatively, they might 
influence when to show a relation. Most systems show strength implicitly by showing a subset of 
possible relations, based on an assumption of a static importance metric. For example, hovering 
over data points to highlight related data points (i.e., brushing and linking) uses binary interaction 
data (hover/not hover) to show binary relation strength (highlight/don’t highlight). 

 
a: 1 (3) 

 
b: 1 (3) 

 
c: 1 (4) 

 
d: 1 (8) 

 
e: 3 (8) 

 
f: 5 (3) 

 
g: 5 (8) 

De-aggregation indicated by direction of arrow 
 
 

 
h: 2 (7) 

 
i: 3 (2) 

 
j: 5 (7) 

 
k: 6 (7) 

Aggregation indicated by direction of arrow 
 
 

 
l: 4 (6) 

 
m: 3 (7) 

 
n: 2 (4) 

Filtering indicated by direction of arrow Zoom out indicated by direction of arrow Encoding similarity and mergability 
indicated by bi-directional arrows 

 
Fig. 7.15. Examples of participants’ use of line arrows to indicate different aspects of relations. The text below 
each subfigure indicates the occurrence of sketches as “subfigure: scene (participant)”. 
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Elzen & Wijk [41] and Henry et al. [62] used aggregate links in which size encoded number of links 
between views (in what is described as an overview) and adjacency matrices, respectively. Figure 
7.16 show these. 

 

In the study, we mainly observed participants implicitly talk about view relations’ strength. When 
participants talked about weak relations, they expressed that they were “weak” or “not strong”, 
whereas when talking about strong relations, they expressed that they were “important”. A partici-
pant for example stated “This connection is not strong” regarding a relation between two bar charts 
in scene 5 (see Figure 7.24) that showed the same data with different aggregations. 

Participants also sketched relation representations that conveyed strength. For example, a partici-
pant used curvy or dotted lines to signify weaker relations than straight lines (see Figure 7.17). 

 

7.2.6 Interference with views 
Interference with views captures that view relation representations may interfere with within-view 
representations. It is thus important to consider this in designs of relation representations. For exam-
ple, to reduce interference, designers may consider the spatial layout within views by routing lines 
around data points. Similarly, merging lines, connecting to labels rather than data points, or aligning 
lines to axes or borders, can reduce interference. Additionally, colour used to show view relations 
might interfere with within-view representations. For example, if using conflicting or strong colour 
encoding, these may take focus from the data shown within views. 

Steinberger et al. [137] routed lines along view borders to reduce occlusion of salient regions. Simi-
larly, Viau & McGuffin [151] fixed lines between data points to axes and view borders to reduce 
clutter. Figure 7.18 show these. 

  

Elzen & Wijk [41] NodeTrix, Henry et al. [62] 

Figure 7.16. Literature examples of showing the strength of views’ relations. 

 
Figure 7.17. Example of showing the strength of views relations. The sketch occurred with participant 4 in scene 
4. 
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In the study, participants considered how meta-view visualizations could interfere with within-view 
visualizations. We divided these concerns in two groups: first, clutter caused from showing many 
between-views relations, by hiding or cluttering the data shown within views, and second, added 
visual indications of view relations that decrease peoples’ ability to focus on or understand data 
shown within views. 

Examples of the first concern included participants connecting lines from data bars in a bar chart to 
legends in a scatter plot instead of connecting to data points, to reduce clutter; using transparency 
for links between data bars and data points; and expressing concerns for using the same color, to en-
code different things, across many views. 

Examples of the second concern included participants’ consideration that highlighting a views’ bor-
der and axes in scene 3 (Figure 7.22) to indicate an overview plus detail relation between two views 
took focus from the data in the detail view; and concerns about between-view lines connected to 
within-view lines in scene 3. In contrast to the first concern that considered the amount of shown 
relations, this concern highlighted that few, but poorly designed between-view representations can 
negatively affect comprehension. 

7.2.7 Summary 
I described a framework that offers six dimensions of view relations and their representations.  

In describing the framework, I have connected it to related work as well as the many novel view re-
lation techniques that we observed in the study, based on an analysis of the collected study data us-
ing Grounded Theory [139]. However, where the analysis focused on the range of thoughts and 
ideas that participants expressed and sketched, the framework considers view relations in terms of 
possibilities for using between-view meta-visualizations. 

The dimensions aim to help design and evaluate concrete meta-view relation representations. How-
ever, the dimensions are loosely orthogonal. This implies that it is possible to design for one dimen-
sion at a time, although it may be more effective to consider the dimensions together.  

Note, that although the dimensions describe important aspects of view relation representations, they 
do not describe all relevant aspects. Most importantly, the dimensions do not describe the style of 
the representations. 

  

Steinberger et al. [137] ConnectedCharts [151] 

Figure 7.18. Literature examples that considered relation representations’ interference with views. 
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Next, I demonstrate the framework used to describe an existing design. 

7.3 The framework in action 
Researchers and designers can use the framework dimensions to describe existing relation represen-
tations and to generate new ones. Existing literature contains many examples of showing combina-
tions of these dimensions. To show the descriptive power of the framework, I traverse the frame-
work by walking through the position of Semantic Substrates [130] in figure 7.19. I use Semantic 
Substrates for three reasons: a) it relates to many aspects of the framework; b) it is well-known 
(more than 200 citations) and cited in many related papers; and c) it is relatively easy to understand 
the visualizations and interactions described in the paper. By traversing the framework, I demon-
strate how it is possible to consider each dimension in turn, with respect to showing between-view 
relations. 

In the framework diagram (Figure 7.19), Semantic Substrates [130] is shown at the top-left hand of 
the list of related literature. To understand the walk-through, I refer the reader to Figure 7.10, which 
show a screenshot of the Semantic Substrates (SS) system. 

Design intent: Following its brown line from left to right, SS is marked as intending to show data 
and encoding. SS shows data relations since it links data item to data item. Further, it 
shows encoding relations when it reduces links between the views to specific regions of 
the views. 

Visual components: SS is marked as using both data, meta-data, and view components. SS con-
nects data points to data points, connects a rectangle that is linked to the axes, which is 
thus a meta-data component, and finally, it connects view components with link colour. 

Re-use of view representations: SS is marked in the middle in re-using view representations, be-
cause there is no apparent re-use of within-view representations. 

Direction: SS is marked at the top of direction in the framework diagram. We did so because the 
data visualised with SS was directed, because the authors stated that they aimed to show 
links’ direction, and because SS actually represented direction with arrows. 

Strength: SS is marked in the middle of the strength rectangle in the framework diagram. We did 
so because SS shows or hides links (binary strength) based interactions, and does not 
communicate strength based on a system-based weight. 

Interference with views: SS is marked towards the middle of the framework diagram. We did so 
because SS uses node-link diagrams, which are known to result in clutter. However, we 
positioned it closer to the middle than the top of the framework diagram, because SS’s 
interaction technique reduces clutter. 
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7.4 Summary and conclusion 
In this work, we studied the varied relations that exist between visualization views, and the 
possibilities for showing them. In the previous sections, I described our framework of view 
relations, which I also used to describe the findings of our study. The framework encapsulates many 
of our findings. 

I believe the framework is relevant in both design and evaluation. First, I believe it is useful in a 
design process, where designers can use it as a catalyst for creating novel between-view meta-
visualization and interaction techniques. Second, I believe it is valuable in evaluating and 
improving existing between-view meta-visualization and interaction techniques. 
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Figure 7.20. Scene 1: View 1 shows a histogram of GDP, which is divided in two areas by shading. These areas 
connect to view 2 and 3, which show bar charts of GDP grouped by continent, for countries that are shaded in 
view 1. A line connects the Asia data bars in view 2 and 3 to the border of view 4 and 5, which show scatter-
plots of employment rate vs. GDP for Asian countries. View 2 and 3, and 4 and 5 are surrounded by areas indi-
cating hierarchy. 
 

 

Figure 7.21. Scene 2: View 1 to 3 show scatterplots. View 1 shows employment rate vs. GDP. View 2 and 3 
show labour costs vs. household income for North America and Asia respectively. View 4 shows a bar chart of 
GDP grouped by continents. Lines connect data points in view 1 to 3, and data bars in view 4. Scatterplot leg-
ends share spatial encoding. 
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Figure 7.22. Scene 3: View 1 shows a line chart. The blue data line in view 1 connects to a rectangle sur-
rounding view 2 and 3 with a similar blue line. View 2 and 3 show line charts of de-aggregations of the blue 
line in view 1. View 4 shows view 2 in detail. The axis ranges shown in both views are red. Lines indicate the 
area in view 2 that is shown in view 4. View 5 shows view 3 in detail, indicated by a box in view 3 connected 
to view 5. 
 

 

Figure 7.23. Scene 4: View 1 to 4 show scatterplots. View 1 to 3 show employment vs. GDP, but view 2 and 
3 only for North American countries. View 4 shows household income vs. infant mortality for North American 
countries. View 5 to 8 show bar charts of GDP grouped by continent, but view 5 and 8 for a subset of conti-
nents. Views are connected to circles, which represent data processes. The orange circle represents data 
and connect to other circles, which in turn connect to views. The pink, blue and green circles represent lay-
out/encode, aggregation, and filter. 
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Figure 7.24. Scene 5: View 1 to 4 show bar charts. View 1 shows GDP growth grouped by continent. View 2 
shows distribution of GDP growth for the same data as view 1, indicated by a dashed red line. View 3 and 4 
show GDP for countries with a GDP growth at approximately 10% and 6%, respectively. Data bars in view 2 
for those percentages connect to view 3 and view 4 respectively. View 5 shows development of GDP over 
time for Sweden, Korea and China. The countries’ in view 3 and 4 connect to view 5 using lines coloured 
similar to the countries. 

 

Figure 7.25. Scene 6: View 1 and 2 show line charts of life expectancy over time for continents and European 
countries, in view 1 and 2 respectively. Lines connect the legend item Europe in view 1 to view 2’s border. 
Scandinavian countries in view 2’s legend connect to these countries’ data items in view 3, which shows a 
scatterplot of GDP vs. life expectancy for European countries. View 4 is identical to view 3, except the hori-
zontal axis show obesity. 
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Figure 7.26. Scene 7: View 1 and 2 show scatterplots of employment rate vs. GDP and life expectancy of 
men vs. women, respectively for European countries. View 3 shows all data fields in the given data set 
grouped by topic. Fields in view 3 that are encoded in view 1 and 2 are highlighted in all view 1 to 3. 

 

 

 

 

 



 

 

 



 

 

 

Part III 
Conclusion  



 

 



 

 

 

Chapter 8 
Discussion 
In this chapter, I discuss the findings from my PhD research, as well as its methodology, in terms of 
how these answer the research question. I defined this in Chapter 1 as: 

 

 

How may abundant display space support visualization-based data analysis? 

 

 

I base the discussion on the four papers and their respective studies, which I described in Part II. 
First, I discuss my findings. Then, I discuss my choice of methodology. 

8.1 Findings 
In this section, I discuss the findings of the four papers described in Part II. These comprised the 
majority of my PhD research. In discussing the findings from the individual papers, I aim to synthe-
size the findings of the individual contributions, and then compare this to related work. 

First, I discuss the choice between using abundant display space for few large visualizations and 
many small visualization views (8.1.1). This leads to considerations of interaction (8.1.2) and visu-
alization (8.1.3) between views, and the tasks (8.1.4) associated with this consideration. Then, I dis-
cuss the span of time in relation to abundant display space (8.1.5). The last area of insight relates to 
people’s physical movements in relation to large displays (8.1.6). Finally, I discuss open issues 
(8.1.7). 
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8.1.1 Two possibilities emerge with increased display size 
When we, as visualization and interaction designers, increase the size of displays, two principal op-
tions emerge. Either we can fill the display with one large visualization, or we can display many 
smaller visualization views, and let users arrange these to make sense of data. The front-page of the 
present thesis illustrates the option of showing many smaller visualization views. I believe that this 
choice is principal, and that understanding this is the most important, simple, and striking insight in 
my work. 

Filling the display with one large visualization gives room to subdivide the space into what we can 
consider as separate views. This is done by e.g., Yost et al. [166]. This option leaves the choice of 
spatial encoding to the designer, who may thus use this encoding to communicate the relations be-
tween individual views. By displaying many smaller visualization views, we let users arrange these 
to make sense of data. This is done by e.g., Tobiasz et al. [143]. This option leaves the task of com-
municating views’ relations to the designer, primarily using alternatives to spatial encoding. 

Clearly, while these two options delimit the potential extremes of visualization views’ size, it is also 
possible to use them in combination. For example, by showing small views as overlays on top of a 
large visualization that fills an entire display. Participants considered this possibility during a work-
shop in the study described in Chapter 4 (Paper I). 

I have studied both options in my work. In Chapter 4 (Paper I), we did not code for these options in 
our analysis. In retrospect however, the collected data showed this dimension. Instead, we described 
themes that related to each of them individually, as well as combined. In Chapter 5 (Paper II), we 
focused on showing few large visualizations. In Chapter 6 and 7 (Paper III and IV), about F3 and 
visualization view relations, we focused on using many small visualization views. 

My focus has thus mainly been on using many small visualization views. This changes the manifes-
tation of abundant display space. Thus, abundant display space turns view-considerations into meta-
view considerations (i.e., considerations about or beyond the view). This turns the focus to letting 
users create new visualizations effectively (Chapter 6, Paper III) and showing meta-visualizations 
of their relations (Chapter 7, Paper IV). 

I discuss these foci in the next sections: 

Section 8.1.2: Focus on interaction with views as a meta-concept. I base this discussion primarily 
on how F3 enabled data exploration by means of interaction and the findings in 
Chapter 6 (Paper III). 

Section 8.1.3: Focus on showing relations between views as a meta-concept. I base this discussion 
primarily on visualizations between views (i.e., meta-visualizations), which I de-
scribed in Chapter 7 (Paper IV).  

Section 8.1.4: Focus on tasks related to using many views as a meta-concept. I mainly discuss this 
in terms of related work, and specifically in terms of the limitations in using related 
work in this context. 
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8.1.2 Data exploration with abundant display space 
Exploration of data is central to how abundant display space can support data analysis with visuali-
zations. Here, I consider data exploration to mean the generation of hypotheses from data, discovery 
of new insights in data, and looking through data to understand the distribution of certain character-
istics (comparable to Brehmer & Munzner [21] explore and Tukey’s [148] notion of exploratory 
data analysis). While much other work has looked at this, most of these consider either fixed spatial 
layouts (e.g., [166]) or take data to mean textual documents (e.g., [3]). 

I believe the results described in Chapter 4 (Paper I) show vividly how abundant display space 
might support data analysis, for example based on trail of thoughts. In the studies described in 
Chapter 5 (Paper II), participants used the space in front of the displays to explore data and de-
scribed the physical space by how they explored it (e.g., “Let me see what is out here”). Chapter 6 
(Paper III) showed concrete data exploration possibilities with many visualization views. Likewise, 
Chapter 7 (Paper IV) considered the relations between such views, which I believe benefit data ex-
ploration greatly. 

Creating and extending views 

The way that people interact with and between views is relevant in considering the way that abun-
dant display space supports data exploration. I argued above that studying this is a sort of meta-con-
cept, and that it goes beyond looking at interactions with the view (e.g., as in Sadana & Stasko 
[122]), but rather looks at the process of moving from view to view. This was our focus in design-
ing the interaction techniques for F3. Our aim was to examine the possibilities for quickly creating 
new views, expanding existing views, and combining parts of views, to allow people to explore 
data. 

For example, the interactions facilitated: 

1. Juxtaposing views, by positioning views side by side by using the explore interaction for 
two parts of a visualization. Gleicher et al. referred to this as spatial juxtaposition [50]. 

2. Breaking down views in small multiples [146], by using F3’s explode interaction technique. 

In doing so, interacting with the visualization views became different to how people otherwise in-
teract with visualizations: the focus was on using views to interact with other views. It was thus not 
visualization interaction, but meta-view interaction – interaction beyond the individual visualization 
views. While this approach is present in related work (e.g., [143]), in F3, the visualizations shown 
within the views were important parts of the interaction. 

Views as toolboxes 

A specific concept of meta-view interaction concerns the use of views as toolboxes. These views 
provide little value except for helping other exploration steps. I believe that abundant display space 
is central in enabling people to use auxiliary views as toolbox views, and conversely, that given less 
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display space, using views as toolboxes is a wasteful use of the limited amount of pixels and display 
area. 

Beaudouin-Lafon [12] offers an approach to understand the use of views as toolboxes, which I dis-
cuss in the following based on Chapter 6 (Paper III). As a reminder, in F3, analysts used some 
views as toolboxes, to interact with, and thus filter other views. For example, in looking at admis-
sions across hospitals in the capital region of Denmark (hospital view), analysts used a toolbox view 
that showed the distribution of admissions across all patients’ age (age view). By dragging the 0-9 
year data bar from the age view and onto the hospital view, they filtered the hospital view by age. 
Keeping the view around for later analyses emphasized its use as a toolbox view. 

In Beaudouin-Lafon’s terms, a view that has an analyst’s focus, show domain objects, here visual-
ized data. Constructing a secondary view (a toolbox view) to filter the first view in focus, creates a 
meta-instrument, and briefly shifts the analyst’s focus to this secondary toolbox view as the domain 
object, in a reification process. The toolbox view itself is a first-class object, since every operation 
that was possible on the initial view is possible on the meta-instrument. This is analogous to a 
painter that shifts focus towards the colour palette (meta-instrument) after painting strokes on a can-
vas (domain object). The palette becomes the painter’s focus through reification. The palette is a 
first class object, since every operation that was possible on the initial view is possible on the meta-
instrument. For example, the palette allows the painter to use the brush on the palette, just as she 
used it on the canvas. 

In dragging data bars from the second toolbox view, the user abstracts the data bar from a domain 
object to a representation of the data (the inverse of Beaudouin-Lafon’s reification). The representa-
tion of this abstraction is an instrument. Here, the alternative release areas infer the resulting action 
of the instrument. This is analogous to a carpenter picking up a hammer, after having repaired it, 
and hitting either a nail, or a finger – different resulting actions of the instrument. 

Dropping the data bar on the original first view filters it, which completes the original domain task 
and returns to the original view as the domain object once again. 

Simplicity and complexity 

In Chapter 6, I described various ways that users could combine views with F3. I discussed these 
possibilities above. The simple and advanced interactions offered many ways of conducting com-
plex analyses. In a way, it seemed as if participants preferred using these interaction techniques 
over the more complex interaction techniques, even though these would provide the same results 
faster. For example, the trail cloning technique is complex compared to the other techniques. This 
technique offered a fast method of repeating analysis steps for a different set of data. However, dur-
ing the deployment, I saw analysts construct similar trails with more manual techniques. This might 
be due to several reasons: 

1. Lack of training: Analysts might not be aware or understand the complex techniques, and be 
able to recognize situations where they are useful. 
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2. Lack of overview of analysis: Analysts might not realize the aim of their analysis at first, 
and would thus not be able to specify their goals before initiating the manual process. 

3. Value from manual process: The act of constructing the trail brought additional value to the 
analysts. The value could be added insights, understanding the context of data, etc. 

4. Complex techniques restrict analysis: The complex interaction techniques restricted analysts 
too much, by limiting the range of approaches. 

The two-week duration of the deployment study of F3 allowed analysts to gain confidence with the 
system. However, I do not believe their level of expertise plateaued towards the end of the deploy-
ment. Therefore, I believe that lack of training was a factor in the observations, and thus, in which 
interaction techniques the participants used. However, some analysts attained high familiarity with 
some techniques, which allowed them to articulate complex analyses with less complex techniques. 
Therefore, I believe the second, third, and fourth reasons above are more likely, and believe that the 
less complex interaction techniques provided the best possibilities for analysts to work with data. 

Additionally, I believe that the design of F3’s Explode and Matrix Creation techniques was weak. 
The additional user interface components introduced by these interaction techniques resulted in 
more complexity than necessary. Ideally, these interaction techniques should create several views 
that are similar to other views. If necessary, the techniques could group the created views in a single 
rectangle, from which analysts could arrange them freely, thus supporting “space to think” [3]. This 
design would keep the simple properties of views, offer a more consistent design, and allow ana-
lysts to combine views created by these techniques to conduct complex analyses. 

Benefits of space for exploration 

Does abundant display space benefit exploratory data analysis? I believe that my research has 
shown that given properly designed user interfaces, abundant display space benefits exploratory 
data analysis for a range of tasks and contexts. Specifically, I believe that the findings discussed 
above shows the possibilities for using abundant display space to support collaborative and explora-
tory data analysis, which has limited support with desktop-sized displays. Thus, this offers an ad-
vantage over existing possibilities. 

I see toolbox views as related to exploratory data analysis. The use of toolbox views outlines prom-
ising possibilities for using periphery space to show aspects of data, which might not require atten-
tion by analysts, but provides context for the current focus. An analyst in the deployment study of 
F3 highlighted this: “If you are looking into a specific problem, seeing the context is important”. 

Trail of thoughts 

When showing more than a few views using abundant display space, it is crucial to support analysts 
in understanding how views are related. The findings from the introductory studies of F3 (described 
in rows 4 and 5 in Table 6.1) in Chapter 6 (Paper III) suggested the importance of this. In the stud-
ies, we observed that participants had trouble remembering views’ relation without support for un-
derstanding the relations. They needed this to understand the contents of individual views, which 
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did not convey all information. If every view had shown all information, understanding the relations 
would probably have been less crucial to participants. However, showing all information in every 
view, would defy the idea of showing many views. Additionally, in fixed spatial layouts as argued 
above, the layout can provide implicit or explicit clues of relations between views. In allowing users 
to arrange views freely, designers of visualization tools leave the freedom for the users to master. 
Therefore, when designers cannot communicate views’ relation through spatial positioning, they 
will have to provide other clues. 

In this section, I described and discussed meta-view interaction based primarily on the studies of F3 
in Chapter 6 (Paper III). I believe my observations have shown that people need to understand 
views’ relations when working with many views. Thus, systems that use many visualization views 
should support this. In F3, we showed one possibility for showing views’ relations. I realized that 
many other possibilities existed, and thus opted to study this in more detail. This resulted in the 
study of representing view relations, which I described in Chapter 7 (Paper IV). This study focused, 
not on meta-view interaction, but on meta-view visualizations. I discuss this aspect in the next sec-
tion. 

8.1.3 Understanding views’ relations with abundant display space 
With abundant display space, there is room to show many views. Doing so creates a need to under-
stand how the views are connected. 

Participants in the workshop study which I described in Chapter 4 (Paper I), considered showing 
relations between visualization views. We identified some of these as trail of thoughts. In designing 
F3 and during the studies described in Chapter 6 (Paper III), I observed and experienced how diffi-
cult it is to conduct analyses without proper support for understanding views’ relations. For exam-
ple, in the initial studies of F3 (described in rows 4 and 5 in Table 6.1), the system did not show re-
lations. In these studies, participants got confused when looking at views that showed related data 
with no indications of the views’ relations. I believe these observations and experiences show that 
people need to understand views’ relations when working with many views. Thus, systems that use 
many visualization views should support this. 

These insights inspired me to design F3’s relation representations, which I described in Chapter 6, 
as well as the study that I described in Chapter 7. In Chapter 6, I showed one possibility for show-
ing views’ relations. In Chapter 7, I described our study on the many different possibilities for rep-
resenting view relations. This study focused, not on meta-view interaction, but on meta-view visual-
izations. 

From these insights, I argue that it is important to represent view relations. While I believe there is 
value in showing views’ relations, many systems do not show these. However, they still support a 
range of user’s tasks sufficiently. For example, Isenberg & Fisher [68] and Andrews et al. [3] 
showed minimal relations between document views. Andrews et al. [4] later described the Analysts 
Workspace, which showed the documents’ relations. Additionally, most visualization systems for 
multi-display environments show no relations between views (e.g., [18, 44]), and, no ubiquitous 
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desktop user interfaces show window’s relations. The few windows and rare apparent relation be-
tween them might explain this. 

Framework of View Relations 

As I have described, systems exist that do not convey views’ relations and still support people in 
working with a range of tasks. It is a design choice which relations, if any, to convey. The study on 
view relations described in Chapter 7, outlined different reasons for showing views’ relations. We 
identified these as the Design Intent dimension, and divided them in five groups (data, process, en-
coding, interaction, and coordination). The Design Intents answer why analysts need to see rela-
tions. I do not believe the literature that describe visualization tasks and taxonomies match the De-
sign Intent dimension, and further believe, that this is due to the abstraction level of the tasks sup-
ported by meta-view visualizations, and thus the Design Intent dimension. 

Is it always a good idea to show views’ relations? I believe that showing view relations is a requisite 
when designing systems that allow users to arrange views freely. In doing so, designers give up the 
possibility of a coarse-grained spatial encoding in trade for users’ freedom to arrange views. De-
signers do this to facilitate sense-making with “space to think”. Therefore, systems need to show 
views’ relations using other visualization techniques than spatial encoding (e.g., use of links, colour, 
etc.).  

I believe that we identified the most important design intents, but that future research might identify 
additional design intents. More importantly however, I believe that there are many unexplored pos-
sibilities within the five design intents we described. For example, 

 Few systems show data relations without using data components, 

 Few systems show encoding relations, and 

 Few systems show coordination relations. 

Even though it seems important to show view relations, systems that do this might not need to show 
them constantly. For example, peoples’ interaction might show or hide relation representations. 
Brushing and linking is an example of this. We did not aim to cover this in our study of view rela-
tions. Many participants however, did consider this aspect, which shows the priority it had to partic-
ipants. For example, participants considered this in terms of its potentials for reducing clutter. We 
chose not to include it in the framework, because we did not consider it as a conceptual decision re-
lating to view relations, but as a design choice. However, other aspects of these methods are consid-
ered in the framework under the coordination design intent. 

The remaining parts of the framework cover what the relation representations show and how they 
show it on a conceptual level. We deliberately left out many specificities of how systems may show 
view relations (e.g., choice of colour, line and arrow style, animations, etc.), because of the wealth 
of design options. Similarly, we omitted details that we thought were of too limited use. For exam-
ple, 
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 If designers aim to show data relations between scatterplots, they might choose to connect 
legend items instead to reduce clutter. This causes indirection – showing what one wants to 
convey indirectly. I believe a separate dimension might explain this better than the Visual 
Components and Interference with Views dimensions. 

 If designers use visual means to group views (e.g., rectangles), relations might use these in 
relation representations. These visual means concern meta-view components, and would 
thus comprise a fourth group in the visual components dimension. Instead, we consider them 
visual means to show individual views’ relations. 

In short, I believe the framework represents the most important aspects of view relations and their 
representations, but that many additional considerations should be part of designing systems that 
show relations between views. Next, I discuss possibilities for improving the usefulness of the 
framework, and show its value to visualization researchers and designers. 

Limitations of the Framework of View Relations 

I believe that we covered aspects of view relations that are important, and in comparison to related 
work (e.g., [79]), have used a broader approach to integrate the many different ways that views 
might be related. Aiming for such an overview necessarily leaves out details, which future work can 
address. In the following, I consider four such omissions. 

First, the framework lacks a formal notation. To describe relations, we need a succinct notation. I 
believe this will improve the usefulness of the framework and for example allow: 1) implementation 
of interactive web-based systems that describe the framework; 2) structured comparisons of tech-
niques for representing view relations; and 3) structured descriptions of related work. This leads us 
to the next point. 

Second, the framework lacks a structured grounding in related work. While Figure 7.19 shows eight 
systems that represent relations between views, many additional systems fit the dimensions of the 
framework. In addition, each described system may use different relation representation techniques, 
which the simplistic figure presentation does not reflect. For example, GraphTrail [37] conveyed 
different relations in different colours, which might be shown with different lines in the framework 
figure. 

Third, I did not demonstrate the framework’s usefulness in designing view relation representations. 
We argued that the framework might be useful as a design tool, but I leave it to future work to 
demonstrate the actual value. 

Fourth, we mostly ignored interactivity in our study on view relations, both in terms of (1) the ef-
fects of view interactions on relation representations and (2) potential interactions with relation rep-
resentations. Part of the reason for these omissions, is the limited amount of interactions that was 
possible to set up in the context of a study that aimed to provide an overview of possibilities. Thus, 
these points are obvious next steps to explore in designs and studies. 
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Next, I discuss tasks related to working with many views, which relates to both meta-view interac-
tion and visualization. 

8.1.4 Tasks related to working with many views 
In designing and describing F3’s interaction techniques, I considered existing visualization task tax-
onomies and typologies. Brehmer & Munzner’s multi-level task typology addresses both the rea-
sons that people perform tasks, as well as the details pertaining to how they solve them. In my opin-
ion, this typology is the most useable tool to understand visualization tasks and interaction, because 
it covers both the reason, the means, and the relation between input and output of users’ tasks. How-
ever, I struggled to fit it to the meta-view interactions of F3. For example, it offered no sensible ap-
proach to describe these F3 scenarios (emphasis indicates concepts in Brehmer & Munzner’s [21]): 

 An analyst looks at a view that show distribution costs across regions. Interested in looking 
at these costs for a specific region, the analyst uses F3’s explore technique, to create a view 
showing costs across hospitals in the specific region. 

In this scenario, the analyst produces a new view by deriving data from the existing view. 
However, while derive should be persistent, this was not the case with F3 or the way that 
analysts used it. 

 An analyst looks at an existing view that shows general costs across a range of regions. In-
terested in looking at these distributions for children, the analyst first creates a new view 
next to the existing view. The new view shows patients’ ages in predefined age groups. 
Then, the analyst drags the “children” group from the new view, to the existing view to filter 
by age. 

In this scenario, the analyst produces a new view to filter the existing view. However, while 
F3 preserves the analytical provenance by recording it, this is a by-product of the interaction 
rather than the analyst’s intention. 

Attempting to use the existing task taxonomies and typologies to describe the aim of F3’s interac-
tion techniques proved unfruitful, as evidenced in the scenarios above. I believe one reason for this, 
is that many tasks related to views, are meta-level tasks. Users conduct these, not to arrive at an an-
alytical understanding, but to lay the foundation for carrying out domain tasks (on domain objects 
[12]).  

In our study described in Chapter 7 (Paper IV), this became more apparent, which is also shown by 
the design intents dimension. 

I have argued above that we focused on meta-view interaction in Chapter 6 (Paper III), and meta-
view visualizations in Chapter 7 (Paper IV). Together, these two foci span a range of possibilities 
for conducting many meta-analysis tasks. In Paper IV, we described “Design intents” for meta-view 
visualizations. I see this as a first step to understanding what comprise tasks related to meta-view 
visualizations.  
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I believe that the focus on meta-view interactions is to some extent incompatible with the existing 
task taxonomies and typologies, and thus argue, that the value of these is limited for such situations. 
In short, the vocabulary available to discuss tasks related to meta-view visualization and interaction 
is limited. 

These considerations end my discussions on matters related to meta-view interaction, visualization, 
and their associated meta-analysis tasks. Next, I discuss duration of interactions with the concepts 
of persistent and transient user interface elements. 

8.1.5 Duration of interactions: Persistent and transient 
Much of my work has implicitly considered the duration of interactions and user interface elements. 
In the workshop study described in Chapter 4 (Paper I), we identified persistency as an important 
theme. Here, participants imagined setting aside areas of a display for persistent views. Addition-
ally, we identified a theme that related to temporarily using large parts of a display for menus. 
Views in F3, which I described in Chapter 6 (paper III) were persistent when used to segregate data 
in secondary views, according to Brehmer & Munzner’s definition [21]. 

Above, persistency obviously expressed that a part of the display does not change. Likewise, transi-
ence obviously expressed a short temporary change in a part of the display. The contention here is 
that we described both the persistence and transience in unbounded terms. What does it mean that 
the display does not change? 

- does it mean that the display state is kept forever1, 

- does it mean that the display state is kept when leaving the display, or 

- does it mean that the display state is kept while looking at another view? 

This shows that persistency and transience is two opposites in the time dimension. Therefore, we 
might understand these terms to mean that people use parts of the interface for a longer or shorter 
time than other interface parts. With this understanding, we might consider if this relate to abundant 
display space. 

In having access to a larger area, I believe that people ‘naturally’ start to use more of it more persis-
tently. For example, by using more distant areas for more persistent data and storage, which Scott et 
al. [124] reported as early as 2004. This also means that in providing interactions based on abundant 
display space, we might start to see this behaviour. I believe that toolbox views exemplifies how we 
may design interfaces that use abundant display space to provide more persistent views. 

                                                 
 
 
1 Surely not, as a printed poster would be cheaper! 
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While I did not observe participants using storage areas with F3, I believe this stem from the lack of 
display space. For both studies of F3, I believe this was due to the limitation imposed on partici-
pants by the displays’ size (84” diagonally) and resolution (3840x2160 pixels). Additionally, the 
time allotted for each task in the lab study did not suggest to use storage areas. 

8.1.6 Movement as an implicit or explicit interaction technique 
Implicit and explicit movement is relevant in relation to data analysis with abundant display space. 
It is relevant because people need to move to reach pertinent areas of large displays, and because 
people tend to move to and from large vertical working areas, such as whiteboards and large dis-
plays. Other work, which I described in section 2.1.7, have observed or studied this (e.g., [8, 9, 98, 
154]). 

In my work, I observed people’s movement in many workshops. I described this in Chapter 4 (Pa-
per I). It seems clear, that with abundant display space, people move away from displays to gain 
overview, and approach displays to see details, as we described in Paper I.  

In Chapter 5 (Paper II), I described our three formative studies of movement as an explicit interac-
tion method. In the second study, we used distance to provide semantic zoom, which participants 
found natural and intuitive. In the third study, we scaled visualizations to reduce the effect of dis-
tance on participants’ visual perception, to the frustration of most participants. I believe this was 
due to people’s normal use of distance to gain overview and detail, respectively. 

Similarly, I reported in the deployment study of F3 in Chapter 6 (Paper III) that we moved the de-
ployed display after four workdays, due in part to lack of use. I believe this was caused in part by to 
insufficient space to step back. This poses limits in terms of where to position large displays during 
deployments, and emphasizes one of many potential difficulties in deployment-based studies with 
abundant display space. I return to this concern, in discussing the methodology in section 8.2.3 

While my research has shed light on physical movement with abundant display space, many oppor-
tunities still exist. The findings described in Chapter 4 (Paper I) in particular, suggests additional 
work. For example, I am curious of the benefits of using micro steps in interaction techniques, and 
imagine that it would be beneficial to let user interface widgets follow people while using abundant 
display space to make sense of data. For example, I imagine that a legend describing multiple visu-
alization views could follow people, while they move between different views. Here, the legend 
would show relations to nearby views by using links to views’ data points. Similarly, while Paper 
II, study 2 showed benefits of distance based semantic zoom, I believe that our study barely 
scratched the surface of the possibilities in this area. Lastly, I have not considered movement and 
collaborative visualization, which is obvious future work. 

Applying the proxemics interaction framework 

Mapping proxemics interaction to information visualization tasks helps to design new possibilities 
for interacting with visualizations. I discuss such mappings based on the studies described in Chap-
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ter 5 (Paper II). In the studies, we explored the potentials of mapping proxemics interactions to in-
formation visualizations on a large display. While the mapping brought value in proposing new op-
portunities for interacting with visualizations on large displays, I believe that it is clear that the 
structured approach to the mapping was difficult due to the definition of proxemics interaction. I 
outline three aspects of Halls’ [58] notion of proxemics and the proxemics interaction framework 
that mapped poorly to our context. 

First, the proxemics interaction framework only considers body posture. In our studies, we used 
both body and head orientation. Likewise, leaning considered as separate information can provide 
additional means of interaction. 

Second, the framework considers relations between people and objects (i.e., Identity). In our stud-
ies, there was only one person (study participant) and one object (large display). 

Third, the concept of movement is different to how we considered it. Hall relates movement to so-
cial behaviour. Here, it suggests that movement close to other people carry social meaning. For ex-
ample, it may carry different meaning to move quickly or slowly past another person. Likewise, 
many people consider quick arm movements rude, while being close to other people2. The proxe-
mics interaction framework considers movement as changes in distance and orientation over time, 
for example to consider “how a person is approaching a particular device or object” [9]. This corre-
sponds well to the social examples above. In our interpretation, movement corresponded to tempo-
rary movement while not changing distance, as used in design #1. 

With these concerns, it might be relevant to consider alternatives, which I believe might be more 
productive, and which use proxemics interaction as inspiration. First, we should divide body pos-
ture and head orientation. Second, the concepts of distance, acceleration of distance, orientation, 
and acceleration of orientation provides a more structured approach to exploration of movement. 
For these, we might then define zones that relate to Halls’ notion of proxemics. Third, proxemics 
interaction’s location and identity definitions provide little value in considering one individual’s in-
teractions in front of one large display. Fourth, if a display shows many views, then it might not 
make sense to consider it as one object. In this case, we might consider views as individual objects, 
for which people have proxemics relations. 

I believe that there are many additional opportunities for exploring the space of information visuali-
zation and proxemics interaction. While we suggested many combinations, I believe that we barely 
scratched the surface of the opportunities. Particularly, I believe that the combinations of many 
small views on a large display could be an interesting area of further studies.  

                                                 
 
 
2 Remember this the next time a child moves a Lego brick two inches from your eyes to show it to you. Note that the 
child has not yet learned that such behaviour is considered rude. 
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8.1.7 Open issues 
I want to discuss a few observations that I did not study further. These concern touching data, point-
ing to data, the size of gestures, and user experience. I do this in the following. 

Touching and pointing  

Interacting with visualizations using touch on large displays affords new ways of interacting. Dwyer 
et al. [38] observed study participants to “think with their hands”. In a workshop in the study de-
scribed in Chapter 4 (Paper I), a participant concerned with analysing website visitor statistics, held 
onto data on a printed sheet, while taking half a step backwards to look at other parts of the display. 
We also observed this behaviour in the formative lab study described in Chapter 6 (Paper III). Here, 
many participants held onto data bars while thinking about how to proceed with the analysis. We 
did not count the exact number, but estimated that it occurred in almost all study sessions. To be 
able to design accordingly, I believe it is important to understand when and why people touch inter-
active displays, not to interact, but to think with their hands. More importantly, touching data seems 
to occur frequently. 

Similarly, people point to parts of displays. This was particularly evident in the proxemics studies, 
where participants experienced frustration in pointing towards display locations while approaching 
them. In these studies, this behaviour caused the location to diminish before participants’ eyes, 
which led to the observed frustration. 

While these considerations apply for various sizes of displays, I believe their importance increase 
with display size. First, I observed participants hold onto data while looking at other parts of the 
display, to hold onto a thought while temporarily shifting focus. I believe the increase in display 
size results in the possibility of larger focus shifts. Second, while pointing and walking towards 
small displays occur, these displays rarely move autonomously. Additionally, people potentially 
point more when collaborating than when working independently. Therefore, pointing should per-
haps not disrupt interactions with content on large displays. 

Designing interaction techniques in ways that does not interfere with these issues is an open issue, 
which future work might be able to address. 

Large gestures 

We observed a group of surprisingly large touch interactions (i.e., about six meters) in the workshop 
study described in Chapter 4 (Paper I). While other researchers have studied the size of gestures re-
cently (e.g., [94, 150]), I do not know of any work that has looked at this with systematic ap-
proaches for large displays and large gestures. Simple questions in this regard, might be whether 
gestures’ size carry meaning and which gesture sizes are acceptable. 

User experience 

Many participants in both studies of F3 described in Chapter 6 expressed their subjective experience 
with F3. What I found most interesting was that participants expressed polarised experiences. They 
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were either very positive or very negative about their experience in using it. For example, some par-
ticipants said that it was “fun to use“ or that it “felt fast”. In contrast, another participant articulated 
that a “lack of appetite” for using it more. I believe there are reasons for participants’ statements, 
and that future work might be able to quantify these. 

8.1.7 Summary 
In this section, I discussed the most important findings in my PhD research. I summarise the most 
important discussion points below. 

I discussed the division of space between few large visualizations and many small visualization 
views, and argued that the general use of spatial encoding with abundant display space is a choice 
between a fixed and a flexible layout. In one extreme, the layout might primarily be chosen by de-
signers with the use of fixed spatial layouts. At the other extreme, designers might subdivide the 
spatial layout into views, and let users arrange these to make sense of data. The degree to which 
spatial arrangements are left to users, is obviously an important design choice, and depends on the 
goals of a specific design. 

Based on my focus on letting users arrange views in most of my thesis, I discussed matters concern-
ing meta-view interactions, visualizations, and the associated meta-tasks that emerge with this 
choice. An important understanding from this is that considering matters beyond individual views, 
allows us to shift focus from what is shown in individual views. For example, with regards to the 
design of F3, the bar charts shown in F3’s views could easily be replaced by scatterplots. In fact, 
F3’s View Matrix Creation technique would be more sensible for scatterplots, by essentially allow-
ing users to manually create scatterplot matrices. To this end, I suggested a set of specific tech-
niques in which abundant display space might be used to analyse data. In addition, I outlined the 
many possibilities for considering interaction with many views, and visualizations of relations be-
tween many views. 

I believe that it is clear that we lack proper typologies for describing the tasks that users perform 
with multiple-view systems. On one side, we have incredibly detailed frameworks that should be 
able to express the different levels of user intents, tasks, and interactions [21]. On the other side, the 
definitions we use to talk about tasks in such frameworks are relatively fluffy. For example, 
Brehmer and Munzner define Derive as creating persistent data (as I described previously). How-
ever, persistency (as I also discussed previously) is relative to the context of use. This exemplifies 
our poor use of words to describe time, but we are perhaps equally bad at describing space (look no 
further than to the subtitle of the present thesis to consider the meaning of large in large displays). 
From this discussion, I argue that being able to understand, describe, and discuss matters related to 
time and space continues to be a major challenge in HCI and InfoVis. 

Next, I discuss the choice of methodology. 
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8.2 Methodology 
In this section, I discuss the methodology used in my PhD research. The aim of this is to compare 
and contrast the used methodology, and to discuss potential alternatives. 

I have based my PhD studies on qualitative methodology. This follows a recent trend in information 
visualization research (e.g., [26, 71, 72, 88]). The research questions, which I described in Part II of 
the present thesis, dictated the choice of methodology. The thesis’ overall research question asks 
how abundant display space may support data analysis with visualizations. Here, I used “may” to 
convey that my aim was to explore and understand a range of possibilities. 

To answer this question, I conducted studies with diverse participants that looked at technologies in 
a range of fidelities, maturities, and complexities, in a range of different contexts, to give a broad 
range of answers to this question. I was more interested in understanding the possibilities of varia-
tions, than in finding the best possibility. I discuss the choices of methodology in the following, 
from these four aspects: 

 Degree of technical fidelity, maturity, and complexity of study objects. This draws on HCI 
method traditions in lo-fi (e.g., [113]) and paper prototyping (e.g., [136]). 

 Choice of study participants. This concerns practicalities of collaborating with domain ex-
perts, what we may learn by studying domain experts (e.g., [82, 83, 156]), and the concept 
of theoretical sampling in Grounded Theory [139]. 

 Study context. This relates to arguments for deployment-based studies (e.g., [131]). 

 Analytical tools. This primarily relates to my use of Grounded Theory [139]. 

These aspects are summarised in Table 8.1 on page 131. 

8.2.1 Degree of technical fidelity, maturity, and complexity of study object 
I have based my studies on a range of technologies, from non-interactive plain whiteboards (Chap-
ter 4, Paper I), over design scenes for interactive whiteboards (Chapter 7, Paper IV) and lab proto-
types supporting a limited range of functionality (Chapter 5, Paper II), and finally, to working de-
ployable prototypes (Chapter 6, Paper III). These different approaches obviously provided different 
advantages. 

The simple technologies gave room for involving participants from many different domains, and 
allowed them to provide their own designs and interpretations, similar to the benefits of paper pro-
totyping [136]. This is similar to related work (e.g., [156]). These approaches resulted in a broad 
range of valuable findings, but they also introduced problems. In the study described in Chapter 4 
(Paper I), the use of whiteboards failed to provide participants with any sense of spatial resolution 
(as we discussed in the paper). In contrast, many participants had a much better sense of the tem-
poral resolution in the imagined interaction designs. I also observed these issues in the study de-
scribed in Chapter 7 (Paper IV). Here, some participants were much more likely to consider interac-
tion, than static visualizations. I believe this exemplified the difficulty of sketching with high spatial 
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resolution. In both these studies, many participants used verbal explanations to manage these issues. 
This shows the importance of analysing the verbal protocol in both of these studies, and to link the 
verbal and visual empirical data.  

The study described in Chapter 4 relied much on participants’ data, tasks, and knowledge of tech-
nology. Thus, existing technology was an important inspiration for many participants, and might 
have biased the participants towards for example the representations used in their domains. In com-
parison, the study described in Chapter 7 used related work of representing view relations as inspi-
ration for the design scenes. This biased the study towards known visualization techniques. Alt-
hough participants were concerned of the bias introduced by their prior knowledge, they identified 
many novel techniques, in addition to considering many known visualization techniques. Both of 
these studies attempted to provide participants a “clean slate” to fill. It is clear however, that any 
question needs to be rooted in some common understanding to be productive. For example, to coun-
ter bias, half of the participants in the view relations study sketched view relations before we 
showed them examples of our designs. This was difficult with little prior introduction to view rela-
tions, which resulted in few insights from the sketching in these sessions. On the other hand, the re-
lations shown in the seven design scenes enabled participants to comment on the designs, and to use 
them as inspiration for many novel ideas. Walny et al. [157] also used near-interactive research pro-
totypes to study interaction and reported limitations that are comparable to the studies in Chapter 4 
and 7. 

The more developed prototypes enabled me to evaluate designs in use. This allowed me to under-
stand the use of large displays to conduct analyses, and to understand the designs’ potentials. We 
systematically controlled the interface alternatives in the studies described in Chapter 5 (Paper II). 
This allowed participants to compare the alternatives to each other as recommended by Tohidi et al. 
[144], and helped us to elicit qualitative interview data from the participants, as we varied the inter-
faces. I described F3 and the studies of F3, in Chapter 6 (Paper III). For these studies, participants 
were free to conduct their analyses using any of the various interaction techniques provided by F3. 
This made it possible to observe which techniques participants favoured and how they used the 
techniques. This for example, enabled us to identify the use of toolbox views. Additionally, the 
working deployable prototype enabled the participants and us to understand the value of F3 in the 
context of analysis work, which we used as basis for the interviews. 

8.2.2 Choice of study participants 
In my PhD research, I have had the pleasure of interacting with and observing participants from a 
broad range of backgrounds. In an attempt to group these many participants, I identify them as 

 analysts or domain experts, 

 visualisation or interaction experts, or 

 ‘average’ people that held a University degree and have some experience with data analysis 
(in the broadest definition – see Chapter 1). 
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I discuss the roles of the first two groups in my work below. 

Domain experts 

I based the studies described in Chapter 4 (Paper I) and Chapter 6 (Paper III) on a range of method-
ologies that involved domain experts. Here a domain expert means a person that has expertise in a 
work domain. I focused on data analysis. Therefore, I interacted with domain experts for which data 
analysis tasks were important in their work domain. 

The first study involved domain experts from many domains. This is comparable to the goals of 
Kandel et al. [82], Walny et al. [156], and Kandogan et al. [83]. This approach enabled me to obtain 
insights that were reflected in a range of domains, and which is thus applicable for many different 
analysis contexts in which large displays might be useful. Based partly on these insights, I designed 
and implemented F3, as a working prototype, which I evaluated in one of the domains that I based 
the workshop study on. Additionally, several participants in the formative studies of F3 considered 
using the system within their work domain. This suggests the usefulness of the interaction tech-
niques for other domains, which I believe is partly due to the broad foundation of the workshop 
study. 

We aimed to provide generalizable findings from the workshop study. This follows a common 
thread in Grounded Theory, which aims to describe commonalities and variations across fields 
[139]. This aim stands in contrast to studying domain experts, where the goal is to understand do-
main experts’ specific context, tasks, and data. However, the findings of the workshop study 
showed that many aspects of analysis occur within very different domains. In my opinion, ground-
ing the findings in concrete domains thus helped to base the very abstract imagination of a large in-
teractive display, in concrete work. The different domains provided insights that is not specific to 
one domain, but is transferable across domains. The results of the formative study of F3 also sug-
gested this. 

Much of the work in designing and evaluating F3 thus included domain experts. This helped to keep 
the work grounded in a domain. However, aside from the resources needed to interact with domain 
experts, there were aspects of these collaborations that were difficult to manage. 

First, our interest with F3 was to focus on the meta-view interactions. However, the domain experts 
suggested many ideas that would shift the focus. For example, they frequently suggested integration 
to other systems. While these suggestions showed the limits of the deployment study, they were 
outside the scope of F3. This problem illustrates the different set of goals our collaborators and we 
as researchers had, and emphasises the necessity of aligning expectations between collaborators. 

Second, the complexity, scale, and sensitivity of the domain experts’ data was high. This resulted in 
two primary barriers: (1) identifying parts of their data and analysis tasks, which we could support 
with tools; (2) managing their data on a technical level, while providing interactive query responses 
to data sources that required very limited access to the data to a select few designers and program-
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mers. While we handled the first barrier through observations, interviews, workshops, and Contex-
tual Inquiry [15], we handled the second barrier mainly with existing data management technologies 
and formal agreements with the Danish Data Protection Agency. 

Sedlmair et al [126] have described similar issues in involving domain experts in deployment stud-
ies. I return to this in the next subsection. 

Visualization and interaction experts 

I based the studies described in Chapter 7 (Paper IV) on visualization and interaction expert partici-
pants. In our paper, we argued that using visualization experts as study participants was the most 
sensible solution. We based this line of argumentation on the consideration that our aim was to 
study meta-data relations which concern abstract visualization tasks, and that this group of partici-
pants therefore would fit better and be able to provide more relevant insights, than domain experts. 

I believe that it was valuable to include these participants and think that they provided many fruitful 
considerations. For example, it was clear that many of the participants had a strong knowledge of 
the field of visualization techniques and their potential pitfalls. Similarly, it was clear that many 
used their knowledge of the existing body of research, which might have limited their imagination. 
Therefore, I believe that it would be interesting to invite domain experts to a similar study, to gain 
insights that are more grounded in analysis work, and to better understand the differences between 
these groups of participants. I would be curious to see the findings of such a study. 

Choosing participants 

The choice of participants in any study is important. Above, I discussed the choices I took in my re-
spective studies. Strauss & Corbin [139] argue for using theoretical sampling to “maximize oppor-
tunities to discover variations among concepts and to densify categories in terms of their properties 
and dimensions.” 

In the workshop study described in Chapter 4 (Paper I), we sampled participants from diverse do-
mains and different types of data analysis to maximize variation and to attempt generalization. This 
is an example of theoretical sampling. Here, we chose to focus on diversifying participants’ do-
mains, while only sampling participants from the set of people that conduct data analyses. In the re-
lations study described in Chapter 7 (Paper IV), we chose to focus on visualization and interaction 
experts. As I discussed above, an interesting next step could be to expand the theoretical sampling 
in the relations study, by conducting similar sessions with domain experts. 

8.2.3 Study context 
I have conducted observational studies in and out of participants’ context of work. In all four papers 
described in Part II, we studied participants out of their context (i.e., in labs). This approach is com-
mon both in HCI and InfoVis, and so also in the work I described in Chapter 2 (e.g., [4, 8, 36, 38, 
69, 76]). In Chapter 6, I described a study that I conducted in participants’ work domain (this is 
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called for by e.g. Shneiderman & Plaisant [131]). I discuss the relative benefits of these alternatives 
in the following, based mainly on the studies of F3, which I described in Chapter 6 (Paper III). 

To understand the work domain of the analysts for which we designed F3, I conducted semi-struc-
tured interviews and contextual interviews at their workplace, in addition to observing them work. 
This approach to studying them was decided from a practical point of view. However, in retrospect, 
for novices, it is not recommended to mix observations and contextual interviews. I found that it 
was difficult to make the analyst set aside time for contextual interviews, knowing that I would be 
around the office during an entire week. I suspect that setting up a few hours with each analyst for 
interviewing them in context might have created a better mutual understanding of the aim of the in-
terviews. 

We also conducted workshops with the analysts. For example, they participated in the workshop 
study described in Chapter 4 (Paper I). They also participated in design workshops where we pre-
sented mock-ups to the analysts and sketched designs together with them. 

To evaluate F3, we conducted both the lab study and the deployment study. In the lab study, we 
asked participants with no background in the analysts’ domain, to work with simple tasks derived 
from the domain. In the deployment study, we asked the analysts to use F3 as part of their work for 
two weeks. Aside from the studies, having access to the analysts’ data helped us to gain an over-
view of the data, and understand some of its complexity. Brief email and face-to-face conversations 
supported this process. 

The alternative studies in and out of the domain and context of work brought independent value and 
complemented each other nicely. 

First, while we were able to obtain many insights from observations and interviews in context, the 
workshops helped to align our understanding of the analysts’ issues and requirements with them. 
Thus, in addition to improving the designs and obtaining new ideas, they worked as a sanity check 
before further design and implementation. 

Second, the initial lab studies (described in rows 4 and 5 in Table 6.1) were crucial in understanding 
the importance of views’ relations. While we could have observed these problems in the later de-
ployment study, this would have been a waste of resources. Furthermore, the relation representa-
tions became a fundamental part of F3’s design, which helps to convey the context and analysis of 
the visualizations shown in each individual view. 

Third, the lab study (described in row 6 in Table 6.1) gave us the opportunity to see many partici-
pants work with the same set of tasks, and understand the difficulties that participants experienced. 
For example, the study showed the issues of drilling deeper into the data than necessary and the in-
consistent possibilities for combining interface elements. We also found aspects of F3’s designs that 
caused problems in the lab study, which seemed less problematic in the deployment study.  
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Fourth, the deployment study allowed us to observe the analysts use F3, and to interview them 
about using it for their analysis tasks. In the following, I discuss the challenges of the deployment 
study in more detail. 

Challenges in deployment 

In the deployment study that I described in Chapter 6 (Paper III), we deployed F3 for two weeks 
with the group of domain experts that F3’s design was based on. In the course of deployment, we 
identified many issues, fixed some of them, and changed the underlying data per requests from the 
domain experts. We visited the site each day for one to six hours, to solve technical issues, to an-
swer questions, and to motivate, interview, and observe the domain experts using F3. However, we 
saw limited use of F3. I believe there were two main reasons for this: 

(1) Lack of integration with other systems. This was a technical issue. F3 did not enable partici-
pants to start an analysis in front of the large display, and continue it when returning to their 
desk. Similarly, F3 did not enable the analysts to transition from their work desks to the 
large display. This resulted in F3 being isolated from the rest of their tasks, and thus only 
useful for brief exploratory data analysis. Sedlmair et al. [126] noted similar problems in in-
tegrating research prototypes in deployment studies. 

(2) Duration of deployment. Due to the relatively short study duration, the participants lacked 
time to get to know the system, and to start using it as part of their analysis tasks. This also 
resulted in few situations were F3 would be beneficial for the analysts. While deployment 
studies are suggested to last from several weeks to months [131], I believe that the two 
weeks duration was too short. 
In addition, it would have been interesting to install the display in a meeting room. How-
ever, because employees also book meeting rooms for non-analysis meetings, this would 
have resulted in even less use of F3 during the deployment period. 

Clearly, to conduct a longer deployment study, we would need to address the first point3. However, 
integrating F3 with the analysts’ other systems would require an extensive effort, even if access to a 
modified version of F3 from the analysts’ desks had been sufficient. 

I believe that our choice of conducting a limited deployment study provided valuable insights com-
pared to the expended resources. During the two weeks, the analysts were able to use F3 in the con-
text for which we designed it. Most importantly, the deployment allowed us to: (1) observe the ana-
lysts use the system and explain its use to others, and (2) obtain valuable insights from interviewing 
them about how they thought F3 supported their analysis tasks. I believe the analysts we inter-
viewed had a high degree of ability to imagine using F3, because they had used it in the two-week 

                                                 
 
 
3 To conduct a longer duration deployment, we would also need to improve stability to reduce the need for daily visits. 
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period leading up to the interviews. This supported the interviews and ensured the high quality of 
insights that we were able to gather from them. 

Obviously, given only two weeks, we could not provide quantitative insights into which interaction 
techniques the analysts used and for what. A longer deployment period would have enabled de-
creasing visits to the site, analysts to gain expertise with F3, and log data to provide useful insights 
on patterns of use. I believe this could be an interesting study and expect that future work will study 
data analysis on large displays over a longer period. 

8.2.4 Analytical tools 
To analyse the empirical data that I collected as part of my PhD work, I have used Grounded The-
ory based approaches, the Instant Data Analysis [84] technique, and more ad hoc approaches for 
less structured parts of analysis. This follows analysis approaches in related work (e.g., [26, 71, 127, 
156, 157]). In the following, I focus on my use of Grounded Theory. 

Grounded Theory advocates letting the data "speak for itself”. The analyst uses the raw collected 
empirical data to build analyses. Then, the analyst identifies concepts through open coding, in an 
iterative process, and identify important concepts as categories. As the analysis progresses, the ana-
lyst identifies properties of categories, relationships between them, and organises these according to 
dimensions. To describe variations of a dimension, the analyst uses axial coding. In any of these 
processes, analysts may use theoretical sampling to fill holes in the empirical data. This process is 
resource-intense. Sedlmair et al. [127] have questioned the value in this process, and argues for 
learning just enough to abstract, rather than attempting to understand all details. 

I discuss the use of Grounded Theory in my work, which I believe is particularly relevant to discuss 
for several reasons. I publish in areas of HCI and Information Visualization. Although it is accepted 
to use qualitative methodology in the outlined research areas (e.g., [26, 71]), many researchers use 
quantitative approaches. Here, the studies focus on: (1) technical contributions, (2) establishing hy-
potheses, (3) conducting controlled experiments that compare time and error based measures (de-
pendent variables) for different conditions (independent variables), and (4) subsequent statistical 
analysis. Therefore, they have limited understanding, knowledge and experience with qualitative 
methodology. Moreover, the technical contributions in the fields provide a level and focus of repro-
ducibility that is difficult or impossible to provide with qualitative methods. Qualitative analysis, 
and thus Grounded Theory is very different from this. It has less focus on reproducibility, control of 
studied object, and generalizability. Instead, Grounded Theory focuses more on understanding vari-
ations and relationships between phenomena. 

The lack of knowledge of qualitative methodology may result in limited apprehension of results 
based on these. First, this requires a strong argument for using Grounded Theory and second, a suf-
ficiently detailed description of the analysis methodology and process when reporting in the re-
search areas. Next, I discuss two important considerations in relation to this: (1) Analysis process 
and (2) theoretical sampling and saturation. 
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Analysis process 

When we described the findings of the relations study in Paper IV, which I described in Chapter 7, 
my goal was to give a clear description of the process we went through from raw data to the pre-
sented framework. 

This is in contrast to Grounded Theory, in which it is acceptable to state the used analysis approach, 
potentially by outlining the phases of said analysis. This does not map well to quantitative method-
ology, where it is easier to follow the process from raw data, to results, to discussion. Therefore, I 
believe that it is important to provide a thorough account of the employed methodology in dissemi-
nating results of such studies in HCI and Information Visualization. In Paper IV, we first described 
the study and analysis methodology. We then described the concepts that arose from the data. Sub-
sequently, we described how the concepts mapped to dimensions of the framework. Finally, we de-
scribed the framework and its dimensions based on the results of the study, and related work. 

I believe this approach has value, when disseminating the results of such analyses to more technical 
readers. Further, I believe this approach has value in attempting to bridge the gap between qualita-
tive and quantitative methodology, which both offer many benefits. However, other contributions 
that use Grounded Theory do not follow this approach (e.g., [156]). 

Theoretical sampling and saturation 

I conducted two studies in which I employed Grounded Theory in a lab context. The workshop 
study and the view relations study, which I described in Chapter 4 and 7 (Paper I and IV). 

In the workshop study, we first conducted two workshops and analysed these. We then conducted 
the remaining nine workshops. Finally, we analysed the collected video data from all workshops. In 
the relations study, we conducted all ten sessions and subsequently analysed the collected video 
data. 

This stands in contrast to Grounded Theory, which advocates theoretical sampling and saturation. 
Theoretical sampling suggests finding and collecting data to fill missing ranges in e.g., a dimension. 
Theoretical saturation suggests continuing to collect and analyse data until the theory is saturated. 
Saturation occurs when no new or relevant data emerge and categories are well developed in terms 
of its properties, dimensions, and relationships. Strauss & Corbin argues that, “Unless a researcher 
gathers data until all categories are saturated, the theory will be unevenly developed and lacking 
density and precision.” 

Above, I first described how the lab studies used a Grounded Theory based approach. Secondly, I 
described how Grounded Theory stands in contrast to this. The limitations set out by conducting lab 
studies naturally dictate how we conducted the studies. For example, we asked participants in the 
relation study to look at the scenes that we designed. Here, the scenes were an attempt to provide 
variation. Additionally, resource constraints also set limitations. For example, it would require lab 
access for a longer time-period to analyse data after each session, compared to conducting all ses-
sions before starting analysis. 
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Alternatively, we could have studied the research questions outside the lab. For example, I consid-
ered interviewing individual participants at their workplace. I would ask to interview participants 
near their desk, in front of a whiteboard. Instead of relying on interactive displays, I could sketch 
the relation scenes by hand, and base the interviews on this. A similar approach was used by Walny 
et al. [156]. We chose to base the study on the interactivity and resolution afforded by the large dis-
play. However, I imagine that the study setup outlined above could provide important insights. Ad-
ditionally, this would allow me to better analyse data between interviews, supporting theoretical sat-
uration, and thus facilitate a study that is more in line with Grounded Theory. 

An alternative point of view is to consider what each of the studies provided in terms of understand-
ing abundant display space. For example, it might be appropriate to consider the expertise of partic-
ipants in the relations study on a dimension of visualization expertise. All the participants in the 
study were skilled. Conducting a similar study with domain experts as suggested in section 8.2.2, 
would reveal new insights and be comparable to the notion of theoretical sampling. In this light, the 
years of analysis that goes in to conducting Grounded Theory (e.g., [127]) might appear more sensi-
ble.  

8.2.5 Summary 
In this section, I discussed the most important methodology considerations from my PhD research. 

First, I discussed the degree of technical fidelity, maturity, and complexity of study object, and dis-
cussed the benefits and disadvantages of using lo-fi prototypes versus more interactive and refined 
prototypes. While lo-fi prototypes allowed us to study visualizations on large displays without writ-
ing a single line of program code, they worked poorly to convey a sense of spatial resolution, colour 
resolution, and interaction. On the other hand, highly interactive prototypes come with their own set 
of drawbacks. There are slow to develop, and inflexible when study participants suggest a new ap-
proach to interacting with or visualizing data. I believe the employed methods have served to shed 
light on the appropriate research questions, and have complimented each other well.  

Next, I discussed the participants that I invited to participate in my studies, and ties together with 
the previous considerations of lo-fi versus hi-fi prototypes. It is typically impossible to create hi-fi 
prototypes that fit all domains. Thus, the choice of using lo-fi prototypes helped to obtain general-
izable insights. I also discussed the theoretical foundations of sampling participants from diverse 
domains and practicalities of how to work collaborate with domain experts. Again, I believe my 
choices of participants in the different studies worked well. It might be debatable whether inviting 
visualization and interaction design experts to the study on view relations really proved to be useful. 
I believe some aspects of this study is reminding of expert reviews, but without the usual heuristics, 
which did not exist for view relation representations. Rather, the results of the study are somewhat 
similar to heuristics. Thus, it might be argued that the visualization and interaction design experts 
helped to define a set of heuristics for view relations – which we described as a framework.  

Third, I discussed the study context. I believe the important part of this discussion, is the extent to 
which the deployment study was successful. Due to time constraints and maturity of F3, the system 
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was only deployed for two weeks. This also meant that we did not get to see much use of the system 
that was not initiated in some way or another by us, and consequently, that the log analyses that we 
initially intended to conduct was of limited value. This most of all shows the efforts that goes into 
conducting a deployment study based on novel technologies. Rather than sending the participants in 
the deployment study an .exe file to run, we had to order a shipment of an 84” display. Aside from 
the limited insights we obtained from seeing the system in daily use, I believe that the physical pres-
ence of the display at the analysts’ office helped them to consider their use of it, in the context of 
their work. Wrapping up, to conduct a proper, long-term study of F3, the system would need to be 
more mature and more tightly integrated into the current work practices and systems at the deploy-
ment site. However, such integrations might to some extent be handled by simple screenshot-based 
solutions, that would allow the analysts to remember their findings from analyses conducted with 
F3.  

Finally, I discussed the use of Grounded Theory [139], primarily in terms of the analysis process, 
theoretical sampling and saturation of empirical knowledge. I discussed how HCI studies are often 
conducted in labs and are based on a pre-decided number of lab sessions, and how this is contradic-
tory to Grounded Theory. Finally, I compared the many smaller studies that we often perform in 
HCI and InfoVis, to the tradition of longer studies in social sciences, in which Grounded Theory is 
rooted. This comparison suggests that perhaps the many smaller studies might be considered to be 
different angles and theoretical samples of a bigger picture. 

With this, I have briefly summarised the different methodological choices, which are also shown in 
Table 8.1 on page 131. In the next chapter, I conclude this PhD thesis.  
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Table 8.1: Overview of the methodological activities in my PhD work. 



 

 



 

 

 

Chapter 9 
Conclusion 
In this thesis, I have sought to answer how abundant display space might support visualization-
based data analysis. I presented this research question in Part I, and answered it through four paper 
contributions. First, I presented these separately in Part II. Then, I synthesized the individual pa-
pers’ results and discussed them together in the previous chapter.  

I outlined specific questions that related work had not answered towards the conclusion of Part I. 
For example, I inquired: 1) how might abundant display space support exploration of large data 
sets, and 2) how might we tailor interaction techniques to abundant display space, and thus leverage 
the benefits they provide.  

With abundant display space, visualization designers have two options. I described and discussed 
these in the previous chapter. First, they can use the available space to fill a display with one large 
visualization. This gives room to subdivide the space based on composite visualization techniques. 
Alternatively, they can display many smaller visualization views, which allow users to arrange 
these to make sense of data. My focus has been on the second option. In choosing this option, there 
are two foci: considering visualization and interaction techniques within or between visualization 
views. In my research, I have identified the importance of between-view interaction and visualiza-
tion. With this, I have defined a large design space. For example, we might consider interaction 
techniques that allow people to drag visualization views together to combine them, and how we 
might show relations between them. I have shown several of these possibilities in my research.  
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I have contributed specific interaction techniques that facilitate comparisons between and within 
views based on juxtaposition, and that allow people to construct analysis trails and to branch anal-
yses. These possibilities show how abundant display space might be used to reason about alterna-
tives, and facilitate data exploration and hypothesis testing. 

The contributed techniques present a set of specific techniques that use abundant display space to 
support visualization-based data analysis, and is thus one approach to answer these questions. With 
this approach, I believe I shed new light on how abundant display space might support data analy-
sis.  

In basing many of my studies on qualitative methods, the results show potential approaches to ena-
ble data analysis and designing visualization tools. Some of these results mainly take the form of 
what could be described as existence proofs. For example, the framework described in Chapter 7 
describes a range of relations between visualization views. While I am confident these different re-
lations exist, we are not sure that these encompass all relations that might exist. My methodological 
choices also imply that I have not quantified the benefits of these, for example in terms of analysis 
speed or quality of insights.  

The results presented in this thesis thus show that with abundant display space, analysts are able to 
analyse large data sets. However, I am not confident that the abundant display space has any impact 
on the size or volume of data that can be analysed or explored. And my empirical work does in no 
way either suggest or quantify if this should be the case. However, I do believe that the level of data 
complexity might be more easily handled with abundant display space, for example by allowing dif-
ferent views to show different facets of data sets. While this is my opinion, the empirical work of-
fers few indications of this. What I did see, was that the domain analysts who used F3 seemed com-
fortable analysing much more complex data than what they were used to with their desktops dis-
plays, SAS, and Microsoft Excel. I believe this observation might be due to the large working area 
and the interaction techniques provided by F3. 

In designing F3, we intended to show process and interaction relations. These view relation repre-
sentations seemed to aid analysts in understanding the relations between views, to compare and rea-
son about alternatives, and to test hypotheses. I believe that the techniques did support this, but our 
observations only vaguely show this. Additionally, other factors might explain our observations.  

While I have only partly answered how abundant display space might be used to reason about alter-
natives and test hypotheses, we were certainly able to show with F3, that it is possible to design in-
teraction techniques that support analysts in exploring data using abundant display space. So much 
in fact, that we in some occasions observed over-exploration or as we called it, drilling too deep. 

Additionally, our studies have shown that we can create interaction techniques which are tailored to 
situations where display space is abundant. It is debatable at which size and spatial resolution we 
can confidently argue that space is abundant. While the deployment studies evaluated F3 on an 84” 
display at a spatial resolution of 3840x2160 pixels, the actual design of F3 were conducted on a 
somewhat larger 130” display at a spatial resolution of 7680x3240 pixels. Some of F3’s interaction 
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techniques seemed slightly limited on the 84” display. For example, the View Exploding technique 
took up most of the width of the 84” display (see Figure 6.11).  

Finally, I have shown how we might provide view relation techniques. I believe an obvious next 
step is to consider how we might provide interaction techniques for the view relation representa-
tions as well. Finally, I believe view relation techniques should be considered in all visualization 
designs that involve abundant display space – even if the design does not allow users to lay out 
view by themselves. 

While I have suggested many view interaction and representation techniques, it is clear that many 
additional and promising possibilities exist, for both between-view interaction and visualization. In 
the next section, I outline potential future work. 

9.1 Future work 
While this thesis has provided a range of important results regarding the potentials of using abun-
dant display space for data analysis, many questions remain open. In the following, I briefly discuss 
future perspectives of my research and outline opportunities and challenges in two aspects of my 
work. First, I believe that I have merely scratched the surface of the potential benefits of meta-view 
interactions and visualizations. Secondly, I believe that it is interesting to explore the concept of 
touch thinking. 

9.1.2 Meta-view interactions and visualizations 
I described and discussed the framework of view relations in Chapter 7 and 8. I believe that I 
merely scratched the surface of the potential possibilities and benefits of meta-view interactions and 
visualizations, and see many interesting avenues of further work in this area. 

First, formalizations for understanding, comparing, and choosing between view relation techniques 
are missing. Such formalizations would be created based on the view relations framework, and 
would bridge the gap between visualization tasks (e.g., [21, 61]), visual variables (e.g., [14, 25]), 
multiple coordinated view systems (e.g., [7, 114]), the InfoVis pipeline (e.g., [25, 27]), formaliza-
tions of visualizations (e.g., [151]), and existing multiple view systems (for example, the systems 
described in Chapter 7). This would help to create a repository of tasks related to representing view 
relations, to generate new view relation techniques, and to evaluate existing techniques. 

Second, while many techniques for showing and interacting with view relations exist, the frame-
work shows a large potential for novel techniques. For example, few contributed techniques show 
encoding relations or use meta-data components to represent relations. Additionally, qualitative and 
quantitative studies of view relation representation techniques are rare [55], and the few existing 
evaluations focus on single techniques (e.g., [37, 143]). This also includes my work on F3. To ad-
dress these challenges, it would be interesting to design, implement and evaluate novel view rela-
tion representations. These could be designed both for wall-, desktop-, and mobile-sized displays, 
and consider aspects of interaction, collaboration, and transitioning between multiple devices. In 
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addition, empirical lab- and deployment-based studies of such designs could provide interesting in-
sights. With inspiration from Griffin and Robinson [55], such studies might compare alternative 
view relation techniques, in comparative lab-based experiments that quantify speed and quality of 
analyses, or alternatively in comparative studies that seek to quantify analysts’ insights. 

I believe such efforts would improve the available analytic tools and thus enable cross-disciplinary 
teams to collaborate on large data collections, more efficiently and with increased quality of ana-
lytic output.  

9.1.1 Touch-thinking 
I observed the touch-thinking phenomenon in the studies described in Chapter 4 and 6 (Paper I and 
III). Participants held on to data points while looking at other parts of the display, seemingly while 
attempting to understand the visualised data, or deciding their next action. Dwyer et al. [38] and 
Jansen et al. [78] reported similar observations. 

I believe that reaching a deeper understanding of this phenomenon presents an exciting avenue of 
future work and presents a current challenge in InfoVis and HCI. Understanding this phenomenon 
could potentially enable us to design more effective interaction techniques that would increase peo-
ples’ ability to use their hands to think. This is in contrast to many current techniques that react in-
stantly to any touch input, and thus do not enable people to touch arbitrary parts of an interface 
without affecting the system state. 

I believe that studying touch-thinking experimentally is an interesting research opportunity. To ob-
tain inspiration for designing such an experiment, I would collect the many sources of empirical ev-
idence for this phenomenon and study them informally. This would allow me to understand the var-
ied types of touch-thinking, which could be used to design good tasks for one or more experiments. 
These experiments would quantify the effects of touch-thinking based on quantitative measures. In 
such an experiment, I would ask participants to perform a range of cognitive tasks with a touch in-
terface. For example, to solve a puzzle or manually lay out nodes in a graph, as in Dwyer et al. [38]. 
In the experiment, I might first attempt to establish a baseline of participants’ use of touch-thinking, 
to observe the extent to which they “naturally” think with their hands. Next, the study would follow 
a within-subjects study design, with touch-thinking as an independent variable. One potential 
method to control this could be to lock the position of pieces/nodes with long-pressure. However, 
more useful, effective, and less interfering techniques might exist. During the experiment, depend-
ent variables of task time and errors would be collected to quantify the effects of touch-thinking. 

This experiment will provide insights into the effects of touch-thinking, and whether the people that 
use touch-thinking by themselves benefit more or less from doing so. The experiment might also 
shed light on which tasks or levels of complexity that should be conducted using touch-thinking. 
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9.2 Summary 
In summary, my research supplemented and complemented recent studies that aimed to support 
complex data analysis tasks with large displays. My studies went beyond designing for example 
pointing and manipulation techniques for large displays. Doing so, I extended our understanding of 
how to support data analysis on large displays, through participant-based design studies and evalua-
tions, and by contributing novel interaction and visualization techniques tailored for such technolo-
gies. 
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ABSTRACT 
Large, high-resolution displays offer new opportunities for 
visualizing and interacting with data. However, interaction 
techniques for such displays mostly support window 
manipulation and pointing, ignoring many activities 
involved in data analysis. We report on 11 workshops with 
data analysts from various fields, including artistic 
photography, phone log analysis, astrophysics, and health 
care policy. Analysts were asked to walk through recent 
tasks using actual data on a large whiteboard, imagining it 
to be a large display. From the resulting comments and a 
video analysis of behavior in the workshops, we generate 
ideas for new interaction techniques for large displays. 
These ideas include supporting sequences of visualizations 
with backtracking and fluid exploration of alternatives; 
using distance to the display to change visualizations; and 
fixing variables and data sets on the display or relative to 
the user.  

Author Keywords 
Large high-resolution displays, interaction techniques, user 
study, workshop, visualization. 

ACM Classification Keywords 
H.5.2 [Information interfaces and presentation]: User 
Interfaces—Graphical user interfaces (GUI). 

General Terms 
Human Factors. 

INTRODUCTION 
Large, high-resolution displays are becoming ubiquitous, 
with size and resolution increasing at impressive speeds. 
Displays now offer sizes well over 100 megapixels [2], 
resolutions over 100 DPI [24], and more stable and fine-
grained support for multi-touch (e.g., Microsoft Surface 
2.0). Research has shown that such displays improve 
performance and user satisfaction [12,33].  

An additional hope for large, high-resolution displays is 
that they support data analysis by giving “space to think” 
[1]. We use data analysis in a broad sense to denote 

gathering, organizing, reading, extracting, visualizing, 
checking, and narrating data; we see it related to 
sensemaking [26] as well as to the types of activity 
supported in visual analytics [35]. The contention here is 
that large, high-resolution displays may fundamentally 
change how data analysis is done by affording new 
opportunities for visualizing and interacting with data. 

Much research has dealt with how users can interact with 
large displays, proposing and evaluating techniques for 
pointing [6], gestures [22,36], text input [29], and using 
physical movement as a navigation aid [2]. Such techniques 
are typically generic and support data analysis only 
indirectly by facilitating input. Less work has been done on 
supporting complex analysis, though some papers discuss 
how to support sensemaking [1] and collaboration on large 
displays [9]. Studies such as [1,37] have helped understand 
how single or multiple users benefit from large displays in 
analysis tasks in a particular domain. However, they rarely 
identify new visualization or interaction techniques for 
using space to think. 

Although recent work has helped understand complex 
analysis tasks with large displays, we know little about how 
to support analysis beyond efficient pointing and window 
manipulation techniques. It is unclear how abundant display 
space can support data analysis tasks in general. Moreover, 
we lack visualization and interaction techniques that help 
users benefit from large displays when analyzing large 
amounts of data. This raises several questions: How may 
large displays support what-if analysis? How may abundant 
display space be used to reason about alternatives? Can we 
come up with interaction techniques that support analysts in 
hypotheses testing? 

The present paper tries to answer these questions by taking 
a complementary approach to existing studies [e.g., 1]. We 
conduct workshops that focus on analysis activities and 
how they may be supported on large displays. Workshop 
participants redo analysis tasks from their work using a 
simulated large display, mocked up by whiteboards and 
various paper representations of data. As participants redo 
tasks, we probe them with questions on how to do their 
analysis given the large display. Workshop participants are 
sampled from diverse domains and different types of data 
analysis so as to maximize variation and to attempt 
generalization. We analyze video recordings of the 
workshops in detail using a grounded theory approach [31]. 

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies 
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. 
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Based on this analysis, we report findings across domains 
and present a catalogue of ideas from the workshops. 

Our aim with this work is to generate new directions for 
researchers and practitioners on how to design for large 
displays in order to make abundant display space work in 
analysis tasks. The paper makes three contributions: 

 An analysis of 11 workshops spanning domains as 
different as artistic photography, phone log analysis, and 
health care policy.  

 A set of ideas for making use of large, high-resolution 
displays for data analysis. 

 A workshop method for working with concrete tasks 
using imaginary technology (in our case, a large, high-
resolution display). 

RELATED WORK 
Much work has investigated the use of large displays both 
for single-person use [12] and for collaboration [18]. Early 
examples include iLand [32] and Liveboard [13], which 
focused on office work and face-to-face meetings. Large 
displays have been shown to improve users’ performance 
and satisfaction in a variety of tasks [2,4,6,8,12]. Increasing 
display space helps view multiple windows with less 
navigation [12], improves task switching [3], enhances 
awareness of peripheral applications [8,16], gives a better 
peripheral view [7], and may promote physical navigation 
[2,41]. Even with the view as a normal-sized display, large 
displays may increase performance in spatial tasks [33].  

The present study focuses on data analysis in a broad sense, 
taking the phrase to denote gathering, organizing, reading, 
extracting, visualizing, checking, and narrating data. This 
sense includes the types of activity supported in visual 
analytics [35] and listed in taxonomies of information 
visualization [40]. The focus on data analysis differs from 
many of the studies mentioned in the previous paragraph. 
They have solved usability problems in interacting with big 
screens, problems of reaching over a distance, and so forth, 
and to a lesser degree concerned analysis tasks. 

In contrast, we focus on how an abundance of space by way 
of large, high-resolution displays may support data analysis. 
For instance, increasing display space may allow analysts to 
view more data at a time or to organize data spatially as 
appropriate for their work. Few empirical studies help 
understand these benefits for specific types of analysis. 
Andrews et al. [1] described how intelligence analysts 
benefit from large displays particularly for sensemaking, 
which is a common analysis activity [26]. Andrews et al. 
argued that a large, high-resolution display fundamentally 
changes analysis tasks compared to smaller display sizes. 

Isenberg and colleagues [19] studied how visual 
representations are used in analysis. They had individuals, 
pairs, and triples work on data sets from SPSS; tasks 
comprised open discovery tasks and more focused tasks 
with one correct answer. From coding of videos they 

derived a description of the analysis process involved in 
solving the tasks. The conclusions with respect to 
interaction and visualization design, however, mostly 
concern the benefit of process-free tools and the drawbacks 
of implementing a strict structure in tools for supporting 
analysis. Robinson [25] report on a similar study of how 
pairs of experts in geography and infectious diseases 
synthesize collections of analysis artifacts. Robinson noted 
that collaboration style and organizational strategy varied 
between pairs even though pairs had similar backgrounds. 
Ziemkiewicz et al. [42] presented a case study of the use of 
immunobiology visualizations. They collected videos and 
screen captures to analyze how visualizations were used 
and conducted interviews with four researchers that had 
used the tools. Thereby Ziemkiewicz et al. identified 
distinct ways of using the visualization, which varied 
greatly among individuals.  

The above work mainly concerns understanding the use of 
visualizations. While such work help design for 
visualizations, few studies have directly attempted to 
identify and propose new ways of interaction and new 
visualization techniques that work for large displays. This is 
the motivation for the present study, where we elicit ideas 
for supporting data analysis with large displays.  

In addition to these considerations about large displays, we 
also briefly want to discuss work that relate to our choice of 
method. The literature shows several ways of eliciting 
design ideas from users when the goal is technology 
innovation [34,39]. The main goal of the present paper is to 
use workshops to elicit ideas. We draw on participatory 
design work on conducting workshops, in particular on the 
inspiration card workshops [17]. In the workshops we use 
whiteboards as a proxy for large, high-resolution displays. 
Several papers on visualization and interaction have 
concerned whiteboard use [10,38]. For instance, Walny et 
al. [38] analyzed snapshots of whiteboards, created by 69 
researchers. They showed how whiteboards contained 
complex visualizations, using a variety of types of 
representations and linking. Their study provides an 
argument for using whiteboards to simulate large displays; 
next we describe how we do so in the workshops. 

METHOD 
The question guiding the study is: How would professionals 
do data analysis tasks on wall-sized interactive displays? To 
better understand this, we conducted workshops with 11 
groups of 2 to 3 analysts from a variety of domains. We 
chose to conduct a workshop study because we wanted to 
observe real, hands-on analysis work, carried out on what 
participants would think of as a large interactive display. 
The key part of the workshop is to have participants 
imagine a whiteboard to be a large, high-resolution display 
and redo tasks on the imaginary display. 

We argue that this approach offers several benefits. First, 
this approach is more general than individual studies of data 
analysis. Second, this approach is grounded in concrete data 
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analysis tasks, rather than trying to develop general models 
of analysis activity and derive design implications from 
them. Third, this approach may offer a sweet spot between 
contextual studies and generalizability. 

Participants 
Eleven groups of professional analysts agreed to participate 
in the study. The groups were recruited from research and 
business domains confronted with a need to collect, 
analyze, understand, and act on large amounts of data. 
Table 1 provides a summary of the groups; their names 
replaced by the letters A through K and group size indicated 
as #. Participants were invited in small groups so as to 
facilitate discussion and to help each other make the leap of 
faith in simulating that the whiteboard was a large display. 

Our sample comprises four (E, G, H, and I) scientific 
research groups that analyze large data sets. A main 
objective of their analysis work is to report results to 
scientific communities. Three groups (B, D, and F) are part 
of organizations that analyze business data on customers, 
production, or accounting; they disseminate their analysis 
results to internal and external stakeholders. Three groups 
(A, C, and K) belong to organizations concerned with 
analyzing data about the general population; they 
disseminate results publicly. Lastly, one group (J) does 
artistic photography and shows it in media and art 
exhibitions. The aim of this variety of domains is to attempt 

more general conclusions than if we did an in-depth study 
of one domain. We return to the pros and cons of this 
variety in the Discussion. 

Workshop preparation: Interviews, Tasks, Data 
To prepare for each workshop, we interviewed one person 
from each group of participants. The purpose of the 
interview was to understand the domain of work and to 
identify tasks for the subsequent workshop (see Table 1). 
We asked open-ended questions about the data the groups 
use and the analysis tasks they perform. We requested that 
tasks and data to be used in the workshop were based on 
actual analyzes that the interviewee had recently been 
doing. Some persons were interviewed two times to clarify 
the domain and find useful tasks. We also identified data in 
raw and various processed forms that would be used during 
the workshop to remind participants of their work and 
generate ideas. The interviews also helped identify co-
workers that would be part of the workshop.  

For each interview, we identified up to five analysis tasks 
that would form the focus in the workshops (see Table 1, 
second rightmost column). A total of 23 tasks were 
collected: for two groups, analysis tasks were not fixed 
before the workshop; while one group had five tasks 
described. Tasks could for example be: How does use of the 
website relate to country of visitor (workshop B), how are 
galaxy image features related to galaxy properties 

 
Participant characteristics Materials used in the workshops 

# 
 

Domain 
 

Type and magnitude of 
analysis data 

Tasks 
 

Representations of data 
 

A 3 Health care policy 
(Public) 

Data on 1m (million) annual 
admissions to Danish 
hospitals. 

Understand errors in computing costs of 
hip replacement surgery based on activity 
information from hospitals. 

3 sheets of tabular data and 3 sheets of 
histograms covering a subgroup of hip 
replacement surgery. 

B 2 Website analysis 
(Business) 

Logs of 2m annual visits to an 
international corp. website. 

Understand how use of the website relates 
to country of visitor and means of access. 

89 printouts of reports from Google 
Analytics based on website in question. 

C 3 Health care policy 
(Public) 

Financial and operations data 
on 1m annual admissions to 
Danish hospitals. 

Compute costs of births with and without 
epidural block and understand how 
changes in configuration of financial 
accounts influence diagnose group costs. 

2 sheets of aggregated costs of patients, 
grouped by disease category; 14 births 
split on hospitals and 28 sheets with 
financial accounts of a specific hospital. 

D 2 Phone log analysis 
(Business) 

Logs of 5k (thousand) users’ 
smartphone activity. 

Understand how separate subscriber 
segments use smartphones during a day. 

Sketched individual and aggregate data 
over time for particular segments.  

E 2 Astrophysics 
(Research) 

Raw and processed images of 
1m galaxies. 

Understand relation between image 
features and properties of galaxies. 

Raw and processed images of galaxies 
in 3 different sizes. 

F 3 Logistics 
(Business) 

Positioning information of 
10k containers on shipping 
vessels. 

Stow containers into partially loaded 
vessel at current port minding stability, 
stresses of vessel and optimal ballast use. 

14 sheets of user interface from an 
actual product used for analyzing loads 
of containers on shipping vessels. 

G 2 Internet game 
statistics 
(Research) 

Logs of 1m internet game 
users in-game activity. 

How are communicational patterns 
defined and how do they relate to player 
age, leveling, and number of players? 

20 sheets of: a tabular overview of 
database tables, a box and whisker plot, 
2 scatter plots, and 3 bar charts. 

H 2 Information 
retrieval (Research) 

Mapping of 30k rare diseases 
to 120k medical concepts. 

Understand relation between mappings; 
why these results and why poor/no match. 

20 sheets of tabular data describing 
input and from a semantic mapping tool. 

I 3 Information 
retrieval (Research) 

Results of 1k queries to an IR 
system based on 1m 
documents. 

Gain overview of different IR scores and 
their relation considering the queries. 

3 sheets of tabular data of query results 
for a rare diseases search engine and 
aggregates based on 27 IR metrics. 

J 2 Artistic 
photography (Arts) 

100k photographs of people 
in the street. 

Sort photographs in categories, construct 
new categories, select exhibition 
photographs and design exhibition layout. 

100 photograph sheets covering 5 
different categories, as well as 5 contact 
sheets with miniature photos. 

K 2 EU air emission 
statistics (Public) 

Statistical reports from 
multiple public sources. 

Find and extract relevant information and 
analyze sources to understand trends. 

8 sheets of paper with data describing 
air pollution in the EU. 

Table 1. Characteristics of participants’ domains and data analysis tasks. Numbers of workshop participants are indicated as #. 
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(workshop E), and how are photographs sorted into 
meaningful categories (workshop J). 

Each interview also resulted in some representation of data 
to be used during the workshop. We collected 452 sheets of 
paper containing tabular data, histograms, scatter plots, bar 
charts, photographs, images, feature images, line charts, 
geographical maps, and user interface components showing 
data to use during workshops. Participants brought these 
sheets of paper to the workshops; in most workshops, 
additional representations of data were produced during the 
discussion. 

Conducting the workshops 
We conducted one workshop for each group of participants; 
workshops lasted up to two hours (on average 92 minutes). 
The workshops were held in a meeting room, 
accommodating up to 20 persons, equipped with a 
whiteboard of 6 meters by 1.3 meters. We had post-its and 
whiteboard markers (in 4 different colors), magnets and 
magic tape available as well as the data printouts that 
workshop participants brought along.  

Each workshop began with introducing participants and 
facilitators, and explaining the agenda for the workshop. 
We explained participants the tools that were available.  

For each of the tasks identified, we asked the interviewee to 
walk through the task, the associated data, and the 
conclusions reached. While doing so they were told to 
imagine that the whiteboard was a high-resolution display. 
Next, we encouraged the other participants to discuss how 
to do the task, how to interpret the data, and to discuss the 
findings – while reminding the participants that they should 
use the imaginary display to support their discussion. 
Figure 1 shows a typical workshop situation: Here, 
participants discussed how related data could be used in 
relation to their main data. 

When this discussion had lasted about 10 minutes or had 
dried out, we probed participants with questions in relation 
to their discussion. The questions come from three sources: 

 Information Visualization taxonomies [11,28,40].  

 The possibilities enabled by large displays and how 

participants would use them. 

 The tasks brought to the workshop. 

When asking questions, we framed or explained them in 
light of the discussion to ensure participants would 
understand our questions. For example, we asked “How 
would you want this shown so as to be able to compare it to 
the other example?”, “Would you prefer to have both a 
visual representation and a table?”, and “How would you 
use the entire whiteboard to support this task?” 

Data Collection and Analysis 
Our data comprise notes from the interviews and 
workshops, data, analysis tasks, and video recordings 
gathered during the workshops.  

We recorded each workshop using two video cameras, each 
viewing the whiteboard from a different angle. Videos were 
in 16:9 HD format so as to enable us to observe gestures, 
pointing, body language, and movement, and were merged 
into 32:9 video files to be able to easily switch between 
angles. 

Initially, workshops A and B were transcribed and coded by 
one analyst, both to describe interesting themes to pursue in 
following workshops and to develop codes. After coding 
these workshops, we also conducted a collaborative coding 
session. We looked for themes, topics, and issues related to 
abundant display space, although other interesting 
observations were kept as well. 

After having conducted all 11 workshops, one analyst 
coded the remaining workshops. The codes were developed 
further during this second pass and codes describing 
activity and general behavior in the workshops were added; 
we also added codes describing the phase in the workshop 
(intro, task intro, task discussion, task roundup, workshop 
summary and pause), interaction on the whiteboard 
(writing, placing paper, moving paper), gestures (on-screen, 
in front of screen, in-air), and movement (stepping back, 
approaching). Following this pass, codes with low coverage 
were revisited; if we were able to call up instances of these 
codes from memory, we added them – otherwise, the codes 
were left out of subsequent analyses. 

In the third and final pass, we held short collaborative 
discussion sessions in which workshop observations were 
discussed. This resulted in identification of six themes that 
one analyst related to the coding. For each theme, we 
identified codes from the second pass that related to these 
and coded the themes on these; we used axial coding [31] to 
develop codes further. 

RESULTS 
The following section first gives an overview of what 
happened in workshops. Then follows six themes developed 
during the third analysis pass (see above). The themes 
concern (1) persistency, (2) showing data side-by-side or 
one-by-one, (3) space to spread out data, (4) trail of 
thoughts, (5) movement, and (6) gestures. Figure 1. Typical situation in a workshop (workshop F). 
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Overview of workshop activity 
We began each workshop with an introduction (4min). The 
average time in minutes used for each task broken down in 
phases was: task setup and introduction (9m), task 
discussion (30m), and task roundup (3m). Tasks varied 
much across workshops (see Table 1), but did contain 
common types of analysis such as comparison between sets 
of data (10 workshops). Another example was discussing 
overviewing (all 11 workshops), in some instances in 
relation to obtaining an overview and in some instances to 
losing the overview. We ended the workshops in an open 
dialogue and thanked the analysts for participating (4m). 

Participants brought data from their analysis domain to the 
workshops and used them in various ways on the 
whiteboard (e.g., attaching them using magnets). In 
addition, participants drew sketches of user interfaces and 
different representations of data. Some common types 
include histograms (used in 6 workshops), tables (9 
workshops), and plots (8 workshops); see Figure 2. 

Annotations on the whiteboard were coded 20.9 times on 
average, varying from 0 to 38 instances between 
workshops, while annotations on sheets of paper were 
coded 1.3 times per workshop. Placing the paper sheets 
were coded 6.3 times on average, while moving papers was 
coded 6.8 times per workshop, varying from 0 to 25 
instances between workshops, indicating that in some 
workshops paper was not used at all. 

Participants were actively engaged in discussion during 
most of the time in the workshops. We saw few pauses in 
speech lasting more than a couple of seconds. Most 
participants were gesticulating while speaking. Most 
gesticulations supported communication between 
participants and facilitators, yet we coded 172 gestures 
relating to interaction with the imaginary display. 

In all workshops, participants moved along the whiteboard, 
and closer to or farther from the whiteboard. In 6 
workshops (A, C, D, F, G, I), only one participant was 
active in front of the whiteboard at a time, whereas in the 
other 5 workshops (B, E, H, J, K) participants shared the 
whiteboard fluidly. When one participant was active, other 
participants would sit, but keep engaged in the discussion. 
We identified 3 typical positions in relation to the display: 
(a) interacting or looking at the display, (b) interacting with 
other participants with the back to the display, and (c) away 
from the display facing it. 

Persistency 
The most frequent use of abundant space we call 
persistency: partitioning the display space so that 
designated areas have a particular purpose in support of 
analysis throughout a task. Participants’ idea behind this 
usage seems to be that when display space is abundant, one 
may use more of it to show data for longer periods of time. 
Persistency was seen in 6 workshops (D, E, F, G, H, J) 
where participants fixed key variables, data sets, or views to 
particular areas. 

A typical example of persistency was seen in a workshop 
where participants worked with analyzing how cellphone 
subscribers use smartphones. In that workshop, an interface 
was sketched during the workshop (D: 32:30-36:40, see 
Figure 3 top-left). The top part of the display was reserved 
for a dimension layer displaying simple data representations 
(e.g., histograms) of variables preselected among all 
variables in the system (the examples given were gender, 
age, smartphone model, questionnaire answers), which 
could be used to modify data representations in a working 
area in the central region of the display. Participants also 
imagined the bottom display area designated for showing a 
fixed set of groups of data (D: 46:10-46:40). 

While most instances of persistency concerned fixed 
display areas, we saw 2 instances suggesting a need for 
participants to define persistency relative to their position. 
In workshop F participants worked with allocating 
containers onto sections of a ship. They talked about seeing 
sections of an entire ship in front of them and having 
related information such as stability metrics and overview 
of ports placed persistently around this view. Participants 
went on to imagine the entire ship spread out over the 
display and having the related information available in their 
horizontal periphery (F: 36:30-37:00). Having this 
information fixed in their periphery would enable them to 
focus on a particular section of the ship while still being 
able to glance at the important information from time to 
time. In Figure 3 (top-middle) a participant is gesturing how 
these views would be positioned.  

In the above example, we described variants of persistency 
pertaining to seeing an overview of the ship and a detailed 
view of information. We saw instances of persistent 
overviews in 5 workshops (D, E, F, G, and J) and of 
persistent detail views in 3 workshops (F, H, and J). 

Persistency was talked about or used with raw data, 
variables, groups of data, and aggregate/calculated 
information. Recall the example above from workshop D 
where areas were designated to hold specific variables and 
groups of data. Likewise, the example above from 
workshop F involved detailed information. An example of 
raw data was seen in workshop G (G: 1:21:12-1:21:22), 
where participants imagined using an area for raw data that 
could be selected and moved to a more active area for 
analysis. Figure 2. Frequent types of representations used: Histogram 

(left, workshop A), table (middle, H), and plot (right, I). 
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Figure 3. Top-left: Analyzing cellphone subscriber behavior on smartphones. Top-middle: A participant show how information 
views would be positioned in a user’s peripheral view. Top-right: A participant uses a magnet to illustrate a flicking gesture. 

Bottom-left: Tree of plots. Bottom-middle: gray-scale images, processed images and image feature-plots of two galaxies. Bottom-
right: Representation of data processing flow. 

Showing data side-by-side or one-by-one 
We saw two distinct approaches to how participants worked 
with multiple representations of data. In one approach, two 
or more representations of data were used side-by-side. We 
saw this approach in 10 workshops (all except J). In the 
other approach, a single representation was changed by 
interaction, showing data representations one-by-one. We 
saw this approach in 7 workshops (A, D, E, G, H, I, J).  

A typical example of using representations side-by-side was 
seen in workshop C (39:00-45:20), where participants 
tasked with understanding cost structures in Danish 
hospitals analyzed patients with related sub-diagnoses and 
where they were admitted. Participants used a stacked bar 
plot showing proportions between individual hospitals. 
Clicking on a specific bar opened a pie chart next to the 
other visual representation showing diagnose broken down 
into procedure codes (see Figure 3, bottom-left). 
Participants went on to discuss seeing histograms and 
averages of individual slices of the pie – for example 
showing distribution over age, admission time, or gender. 
In this style, representations of data unfold over a series of 
interaction steps, forming a tree-like path of interactions. 

A typical example of using a one-by-one approach was seen 
in workshop D (46:20-51:35) where participants who 
worked with smartphone usage logs imagined a middle 
working area showing a data plot of smartphone usage 
averaged over a 24-hour period. They wanted to drag 

variables onto this data plot and thereby let the variables act 
as filters for the data shown. For example drag the segment 
20-29 years of the variable age onto the data plot thereby 
filtering on this criterion. This is illustrated in Figure 3 (top-
left). The boxes in the top of the figure represent variables 
which can be dragged down onto the graph in the center of 
the figure to filter the data. 

The examples above concern drilling-down in data by 
filtering on variables. We also saw the approaches of side-
by-side and one-by-one used when comparing groups of 
data. In workshop E (11:25-12:05), for example, 
participants looked at original grayscale images, processed 
images, and image feature-plots of two galaxies to compare 
and understand how visual properties of galaxies were 
represented in the plots of image features. This 
configuration of data is shown in Figure 3 (bottom-middle). 

The two approaches represent a tradeoff between use of 
space and interaction. Although space is preferred for many 
purposes, interaction over time is nevertheless preferred in 
some situations. For instance, in workshop I (75:15-75:35), 
participants compared sets of data by flicking back and 
forth between them. They started by defining what data to 
compare using checkboxes. Then they talked about viewing 
data one-by-one: You could perhaps define two views that 
are [in] the same space and then say; well can I have one 
or the other, one or the other [said while doing a flicking 
gesture and looking at the data]. They did this to understand 
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the difference between the two views: … to see visually, to 
swap between [the views] and [see] what happens actually 
[flicking gesture]. They preferred this rather than having 
sets of data shown next to each other. This situation is 
illustrated in Figure 3 (top-right) where a participant uses a 
magnet to illustrate a flicking gesture. 

Space to spread out data 
In 3 workshops (D, I, J), participants used space to spread 
out choices over large areas so that they could select from 
multiple options shown with rich representations. The 
abundant display space enabled participants to use several 
meters of the display for a temporary view to help select 
from a list of choices or to assign something to an item. 

A typical example of this was seen in workshop J (97:18-
97:34), where participants were working with categories 
containing thousands of photos: Then I am able to take for 
instance these categories [pointing gesture towards the area 
of the categories] and spread them out over the upper part 
of the display [doing a spreading gesture over a large area 
of the upper display area]. This enabled the participant to 
assign photographs to the categories.  

Another variant of using space to spread out data were seen 
in workshop I (40:46-41:08), where participants analyzed 
results from an information retrieval system. Part of this 
work compared measures of different algorithms. In this 
situation participants imagined using the overview as an 
entry point to data: If we could generate on the fly [vocal: 
bouuf, snapping and doing a spreading gesture] all the 
measures in one big table […] if we rather than having to 
look at it one by one [while doing flicking gesture in the air] 
could have a starting place with lots of information about, 
on summary data […] and then move to, ok let’s go into the 
details and look at the ranks and what actually happened. 

The use of space to spread out data differs from 
participants’ use of space to view information side-by-side.  
Using space to spread out data is temporary and typically 
used when participants need to select or modify data. 

Trail of thoughts 
With abundant display space, participants commented on 
the value of being able to see earlier steps of analysis by 
having these steps represented visually; they also referred 
back to and used representations of such steps in the 
workshops. In some workshops, data processing flows were 
used to represent this idea (A, C, G) and in others snapshots 
of the display state were shown in small (G, I). We saw 
examples of such trails of thought in 4 workshops. 

An example of using a data processing flow was seen in 
workshop G (55:10-57:50), where participants drew steps 
of data processing as vertices and the order of processing as 
edges. The representation of the data processing flow is 
shown in Figure 3, bottom-right. Participants explained that 
it was useful to have an overview of how data were 
processed and be able to go back and look at earlier steps in 
the analysis. Results from individual vertices could be 

represented using histograms or other representations. A 
related observation was seen in workshop C (39:00-45:20, 
also described in the section on side-by-side viewing). Here 
the steps were represented directly by visual representations 
of results instead of by vertices. When participants wanted 
to explore a part of the results further, they would press this 
part, which would make an edge appear that led to a more 
detailed view of part of the data (see Figure 3, bottom-left). 

An example of using snapshots was seen in workshop G 
(81:57-83:05) where participants discussed how to mark 
important findings while doing analysis to be able to 
summarize at the end of an analysis session: If you could let 
it make up a summary so you simply could have a 
description of this [analysis] in time so that you at the end 
of a meeting quickly could summarize what we have been 
doing. … if you simply had the display time your progress 
along the analysis [gesturing over  the lower part of the 
screen to indicate a horizontal line of display snapshots] so 
that at some point you could say; now we are rewinding to 
the start of the meeting and then quickly go through the 
points we have touched upon. … Then you would be able to 
do a commented summary [based on this]. Participants also 
remarked that marking dead ends in analysis was important. 

Movement 
The size of the display naturally caused participants to 
move around in front of the display, and moving closer to 
or farther from it. Moving away from the display seemed to 
facilitate obtaining an overview and moving closer seemed 
to facilitate seeing details. When participants moved in 
front of the display, they did so to get to data or views of 
interest, to move out of other participants’ view, to gather 
an overview, or to point to something on the display. 

In workshop J (59:40-60:00) for example, participants 
moved close to the display to look at details in specific 
photographs and quickly back again to position this detail 
in their overview: I can construct an overview of the 
photographs, I can see what’s on the photographs while 
still being able look at the entire overview. The sequence of 
first standing away from the display and thinking, then 
walking up close to interact with the display and then 
slowly backing up, as if to make sure things were as 
expected, was seen in 8 workshops; it was most visible in 
workshop J. To confirm this observation, we inspected 
movement patterns in workshop J by sorting still images 
grabbed with 15 second intervals.  Three main categories of 
positions in relation to the display were observed: 
interacting or looking at the display (close), with the back 
turned to the display and interacting with other participants 
(middle), and away from the display facing it (far). Sorting 
the grabbed images into these categories showed that 
participants spent an equal amount of time in all three 
(close: 34%, middle: 33%, far: 33%). 

In some workshops, we observed participants only taking 
half a step backwards to get distance from the display and 
to get an overview (e.g., workshop E: 26:40-26:41). 
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Another variant of movement relates to small movements 
with both feet on the ground. An example of this was seen 
in workshop B (23:05-23:07), where participants did a task 
on one part area of the display that required data placed in 
another area. To be able to grab the data located far away at 
the display, one participant leaned backwards, thus getting 
an improved field of view to the distant display area. 

Gestures 
We saw 172 gestures with the imaginary display that were 
significant or interesting enough for coding. We grouped 
these gestures into three types according to their occurrence 
in workshops: (a) on-screen (9 workshops, 44 gestures); (b) 
in front of screen (8 workshops, 43 gestures); and (c) in-air 
gestures (10 workshops, 85 gestures). Most of these 
gestures have been described in the literature. For instance, 
we coded 46 instances of sync- or asynchronous bimanual 
interactions. 

An observation that surprised us was the use of very large 
gestures (13 gestures in total, 6 workshops). We see the size 
of these gestures to be related to display space. An example 
of a large gestures was seen in workshop J (95:50-95:55) 
where participants talked about changing overall states of 
the display (see Figure 4): If there was a permanent image 
viewing function, which is this one [pointing to a spot on the 
display] having the large view. This is a view which you 
actually could do like this to [gesturing with one hand from 
the left of the display to the right, almost 6 meters] and 
draw it all the way over here, because now I just need it to 
be here. 

DESIGN IDEAS 
Our results suggest that information visualization systems 
could be designed with consideration for persistent views, 
not only as tool palettes and other interface objects, but also 
to show and interact with data such as raw data, variables, 
slices of data and general information views.  

Views were fixed to top and bottom areas of the display for 
specific purposes, thus promoting the center area to a 
working or thinking area. This area was kept for things that 
were part of a thought process, whereas items supporting 
constructing and reconfiguring the working area were 
positioned in harder to reach positions (i.e., in the vertical 
periphery). Likewise, areas in the horizontal periphery 
could be used as persistent areas displaying for instance 
aggregated information. Participants moved back and forth 
in front of the display. This implies that such an area may 
need to move with the user. Participants also moved away 
from a display, for instance to gain an overview of items on 
the display. In this situation, these peripheral views may be 
irrelevant and could be hidden to not block important data. 

Participants used views of data both side-by-side and one-
by-one depending on the situation. This suggests enabling 
both styles of interaction with data. It also suggests a need 
to improve our understanding of when it makes sense to use 
space rather than interaction.  

Participants also used one view of data to create new views 
next to the current view by interacting with parts of data in 
the view, thereby forming paths of interaction that enabled 
backtracking. Another method of providing backtracking 
was to show representations of previous display states, for 
instance in the bottom display area. This method seemed to 
be relevant for analysts when constructing a summary of a 
collaborative analysis session. 

Data were temporarily spread out over large areas to enable 
participants to select from choices. Using space to show 
choices in rich detail and high resolution seems ideal. When 
the use is only temporary, these areas may block other data.  

Gestures may be relevant to use both on, close to, and from 
a distance to the display. Large gestures seem to be relevant 
and perhaps the size of a gesture and the distance to what it 
refers to may carry meaning in itself.  

DISCUSSION 
We have presented a cross-domain workshop study of how 
domain experts would analyze their data with abundant 
display space. The workshops were analyzed to generate 
design ideas for interaction and visualization with abundant 
display space. The most prominent design ideas were: 

 Use abundant display space for persistent views of data. 
 Use middle center area to support thinking. 
 Use vertical periphery to configure middle area. 
 Enable both side-by-side and one-by-one views. 
 Enable paths of interaction. 
 Use abundant display space to support backtracking. 
 Use abundant display space to show rich representations 

of choices. 
 Enable use of large gestures. 
 Support interaction from a distance. 

Relation to Existing Work 
In relation to the literature on large high-resolution 
displays, our design ideas warrant some comments. Earlier 
work has suggested that large displays promote physical 
navigation [2]. Certainly, movement in the workshops was 
necessary as no virtual navigation was possible. However, 
the workshops suggested that pairs use and switch between 

Figure 4. Example of a very large gesture. 
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parts of the simulated display flexibly. This is similar to 
findings that high-resolution displays with touch may lead 
to less territorial behavior (e.g., [20]). The finding that 
people move not only sideways but also back and forth in 
relation to the display is related to the recent interest in 
proxemics for interaction [5]. 

Although we saw use of abundant display space to support 
backtracking, probing for styles of interaction related to 
undo/redo techniques from the desktop such as [27] did not 
resonate with participants. Implicit use of space to support 
backtracking seems a sensible way of using abundant 
display space, and is similar to how [30] represent history. 
In our workshops, however, history was integrated in the 
primary view. Participants suggested constructing 
summaries of analysis by marking important findings and 
representing these as snapshots of the display, which seems 
to have a different purpose than both undo/redo techniques 
and backtracking, and is perhaps similar to what Mahyar 
and colleagues saw [21]. 

Our observation of side-by-side and one-by-one views are 
in line with Gleicher and colleagues’ notion of juxtaposition 
[15]. Here, side-by-side views are similar to juxtaposition in 
space, whereas one-by-one views reminds of juxtaposition 
in time and in some instances of blink comparison. 

Workshop Methodology 
We used cross-domain workshops as a methodology for 
uncovering new interaction styles and new uses of 
visualization. In the introduction to this paper, we 
speculated that cross-domain workshops with simulated 
large displays might lead to interesting insights. Next, we 
want to revisit this speculation based on the experience of 
running the workshops and of analyzing them.  

In many and important parts of the workshops we found 
that participants’ imagination was vivid. After a workshop, 
we showed a participant a large high resolution display.  He 
commented that seeing this display would have made him 
think differently about the whiteboard during the workshop, 
which would probably have both positive and negative 
effects on participants’ imagination. 

One reason why we were able to derive design ideas from 
participants seems to be that we used both their behavior 
and their comments to derive ideas. Another reason seems 
to be that comparing across domains helps identify common 
threads of data analysis. The present study has identified 
some of the same uses of abundant display space across 
domains as varied as photo management, health care, and 
container loading.  

In other parts of the workshops, it seemed difficult for 
participants to imagine new technology: it was clear from 
some participants’ dialogue that they thought in terms of 
the data representations, software, and interaction 
techniques they know and use today. For instance, in one 
workshop participants would have alternate terms related to 
a given sentence by a number describing the part of the 

sentence to which the term was an alternative. They did not 
see, however, that with abundant display space the position 
information could be substituted by placing terms directly 
around the sentence (similar to a large version of excentric 
labels [14]). In other workshops, participants would talk 
about using arrow keys to sift through pictures, or talk 
about how to access syntax information.  

The use of a whiteboard as a large display generally worked 
well: whiteboards are ubiquitous and can be used right 
away for drawing and attaching prints. Compared to studies 
of whiteboard use in visualization [34,38], we saw similar 
rich and unconstrained use. This suggests that the range of 
representations and interactions with the whiteboard might 
be varied enough to inform design. However, we see at 
least two ways the workshops can be improved.  

First, whereas the whiteboard worked well to convey a 
sense of abundant display space it did not convey any sense 
of resolution. Most likely, such a sense was developed 
based on the resolution of the prints that participants carried 
with them, in addition to the scale at which they drew on 
the whiteboard. We think that physically large and small 
prints of data, as well as high and low resolution images 
may exemplify the role of resolution to participants, making 
it unnecessary for workshop moderators to explicitly 
describe or probe for resolution. 

Second, we saw a lack of motivation to remove data once it 
had been placed on the whiteboard. It is unclear how this 
relates to how people use whiteboards’ available space and 
only erase on an as-needed basis [23]. It might also be 
related to working out the tasks in the workshop setting 
(i.e., as a group) which differs from how some of the 
participants normally work. 

Limitations 
Our paper has a number of limitations. First, our workshop 
approach attempts to bridge doing field studies of data 
analysis to derive implications for design and using 
models/theories to derive implications. Recommendations 
derived from this attempt, however, need to be validated 
using other types of method. In particular, we are interested 
in trying to implement the interaction techniques developed 
and test them across domains, following the idea that cross-
domain explorations may integrate the concrete (task 
solution in a single domain) with the general. Second, the 
number of participants in each workshop was low and thus, 
we cannot extend our findings to larger group sizes. 
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Information Visualization and Proxemics: 
Design Opportunities and Empirical Findings 

Mikkel R. Jakobsen, Yonas Sahlemariam Haile, Søren Knudsen, and Kasper Hornbæk

Abstract—People typically interact with information visualizations using a mouse. Their physical movement, orientation, and 
distance to visualizations are rarely used as input. We explore how to use such spatial relations among people and visualizations 
(i.e., proxemics) to drive interaction with visualizations, focusing here on the spatial relations between a single user and 
visualizations on a large display. We implement interaction techniques that zoom and pan, query and relate, and adapt 
visualizations based on tracking of users’ position in relation to a large high-resolution display. Alternative prototypes are tested in 
three user studies and compared with baseline conditions that use a mouse. Our aim is to gain empirical data on the usefulness of 
a range of design possibilities and to generate more ideas. Among other things, the results show promise for changing zoom level 
or visual representation with user’s physical distance to a large display. We discuss possible benefits and potential issues to avoid 
when designing information visualizations that use proxemics. 

Index Terms—Proxemics, information visualization, user study, large displays, user tracking, movement, orientation, distance. 

 

INTRODUCTION 

Information visualization uses interactive graphics to amplify 
cognition [5]. It can improve many aspects of dealing with large sets 
data: Visualizations help explore and navigate large information 
spaces [39], analyze and make discoveries in high-dimensional data 
[43], and discuss data within on-line communities [51].  

Most information visualizations—commercial products and 
research prototypes alike—are designed for a setting where users 
interact using a mouse on a desktop-sized display. Recent research 
has explored how visualizations should be designed for non-desktop 
settings [27], in particular for large high-resolution displays. 
Examples visualizations designed for this setting include using 
tangible input controllers [21], sensing body movements as implicit 
navigation input [9], and adapting interaction techniques for large 
displays [19].  

We extend this work by using the notion of proxemics to identify 
design opportunities. Proxemics studies the relation between people 
as it is expressed in the use of space [15,14]. Compared to early work 
on proxemics, recent work [13] as well as this paper extend the 
notion of proxemics to describe also the relation between people and 
objects (often user interfaces). In research on human-computer 
interaction (HCI), proxemics has for instance been used to design 
interaction techniques that change user interface layout based on 
users’ position [3], and to study orientation and distance among 
devices and doctors in neurosurgery [31]. Previous research has also 
demonstrated how body orientation and position can be used with 
visualizations: for implicit interaction with ambient displays [52] and 
for coarse 3D navigation in microseismic visualizations [32]. We 
build on previous work to explore how the notion of proxemics can 
be applied to interaction with information visualization.  

The opportunities for proxemics in information visualization are 
manifold. First, it may be used to adapt visualizations based on the 
users’ position and orientation relative to the display. Second, it 
could use movements in front of a display to have visualizations 
follow users’ movements or blend as two users get close. Third, we 

could augment users’ backing away from a large display by even 
further zooming out or abstracting the visualizations. Many other 
uses of proxemics in information visualizations may be imagined.  

This paper explores in particular design opportunities for 
information visualization based on movement and distance to large 
high-resolution displays. We focus on using movement and distance 
because earlier work has emphasized physical navigation as 
important when using large displays [2] and in group work [20]. We 
explore spatial relations only between a single user and 
visualizations; exploring relations between people would provide 
more opportunities, but is beyond the scope of this paper. The 
opportunities are illustrated with a design space and with sketches; 
the opportunities focus both on supplementing other input techniques 
and on replacing them. We also show how earlier work that has not 
explicitly used the notion of proxemics (e.g., [52]) can be understood 
through proxemics and potentially benefit from its analytic 
framework. We select a subset of design opportunities to implement 
and test in three user studies: (1) navigation by physical movement, 
(2) querying coordinated views by movement, and (3) adapting 
visual representation to distance. We do so to generate design ideas, 
but also to provide initial data on the usefulness of combining 
information visualization and proxemics. Our approach is to ground 
some opportunities in empirical data rather than to give an 
exhaustive systematic review of the opportunities or to present in-
depth data on a single case. 

We contribute (a) an initial analysis of using proxemics for 
information visualization, (b) prototypes of information 
visualizations that adapt based on tracking of their users, and (c) an 
evaluation of a set of proxemics visualizations. The argument is that 
proxemics may offer promising design opportunities for non-desktop 
visualizations; we think such opportunities are valuable to both 
researchers in visualization and to designers for large displays.  

1 RELATED WORK 

The term proxemics is due to Edward T. Hall [14,15], who used it to 
describe the study of “how man unconsciously structures 
microspace—the distance between men in the conduct of daily 
transactions, the organization of space in his houses and buildings, 
and ultimately the layout of his towns”. Among other contributions, 
he related physical and social distance in a set of four zones, from 
intimate space (less than 46cm between people) over personal and 
social space to public space (over 3.7m). Hall discussed how social, 
gender, and cultural factors may mediate this relation. Much research 
has built on and extended Hall’s work, applying it for instance to 
design [47], human-robot interaction [33], and HCI. 
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Proxemics is increasingly used in HCI, both as (1) a notion to 
understand and analyze collaboration and interaction, and (2) as a 
notion to drive the interaction among users and devices. The first 
point has been studied in computer supported collaborative work 
(CSCW), where the relation between physical distance and 
perception of social distance has been a key issue [37]. Applications 
in CSCW include a study by Hawkey et al. [17] investigating the 
relation between proxemics and collaboration success with a large 
wall display. Stretching proxemics to include the relation among 
users and devices has led to several descriptive accounts. Mentis et 
al. [31] studied orientation and distance among devices and doctors 
in neurosurgery using notions of proxemics. Jakobsen and Hornbæk 
[20] used proxemics to describe interaction in front of a large 
display. 

The second point above has in particular been inspired by 
Marquardt and Greenberg’s notion of proxemic interactions [13]. 
Their work extends the notion of proxemics so that it pertains not 
only to relations among persons, but to relations among people, 
digital devices, physical objects, and the environment. They consider 
five categories of proxemic dimensions particularly for ubiquitous 
interaction (which is relevant more broadly for HCI): 
 Distance, the physical distance between entities, either given as 

a continuous measure or relative to discrete zones. In Lean and 
Zoom, for instance, semantic zooming is based on the users’ 
distance to a laptop screen [16]. 

 Orientation concerns which direction a person (or other entity) 
is facing. This has been used, for instance, to adapt presentation 
software to different views depending on which way the 
presenter is facing [13]. 

 Movement concerns the changes in distance and/or orientation 
over time. For instance, personal territories on tabletops can be 
adapted when one user approaches another user’s space [26]. 

 Identity concerns distinguishing between entities. For instance, 
a display may respond differently to the movement of a mobile 
phone than to the movement of a person [13]. 

 Location describes the place of interaction. A simple instance is 
the presence of a person in a room. 

A recent toolkit helps detect and react to these dimensions [29]. 
Some earlier work has used related types of movement to control 

interaction, without explicitly using the notion of proxemics. Vogel 
and Balakrishnan [52] presented a display system that supported a 
smooth transition from public use of the display, through implicit 
interaction at a distance, through up close, personal interaction. Ju et 
al. [23] presented an interactive whiteboard that sensed users’ 
distance to the board for switching between modes in using a 

whiteboard, in particular authoring and ambient use. Marquardt 
describes gradual engagement in providing connectivity, information 
exchange and transfer as a function of proximity [28]. Marquardt and 
colleagues give many other examples [13,30]. Work on navigating 
virtual environments has also used movement and orientation 
extensively. For instance, Souman et al. [48] described how an 
omnidirectional treadmill allowed participants to walk in any 
direction they wanted in a virtual environment, with information in a 
head-mounted display being updated based on their walking. Such 
work differs from the focus of the present paper in that movement 
and orientation are used to generate a view (say, in a head-mounted 
display) of a virtual environment corresponding to a particular 
position of the users’ head; instead, we consider uses of proxemics 
data for changing visualizations of abstract data.  

The present paper uses the notion of proxemics to drive 
innovation in interaction with information visualizations. One reason 
to do so is that the notion of proxemics might help generate 
interesting designs, beyond those described in the literature. Another 
reason is that to our knowledge, no paper has attempted to relate 
proxemics and visualization, despite the interest in using 
visualization on large displays and despite the frequent observation 
that movement [2] and orientation [4] play key roles in interaction 
with large displays. A third reason is that even though earlier papers 
have used movement to control interaction (e.g., Vogel and 
Balakrishnan [52]) they rarely relate to the information visualization 
literature and do not evaluate visualization tasks. Thus we proceed to 
discuss the relation between proxemics and visualization.  

2 DESIGN OPPORTUNITIES 

As argued earlier, a variety of design opportunities may be generated 
from the proxemics literature. Because these have not been explored 
in relation to visualization activity, we next discuss some design 
opportunities, in part summarized as the design space in Table 1. 
Some of the opportunities are implemented as prototypes and 
evaluated in user studies in the second half of the paper (marked #1, 
#2, or #3). Some entries in the table are blank, either because they 
are uninteresting or because we have yet to come up with, or find in 
the literature, a compelling example.  

The design space is organized from established views of key 
characteristics of proxemics and information visualization. To this 
end we choose categories from earlier work on proxemics [13] and 
information visualization tasks [18].  

Many alternatives to these two choices exist. With respect to 
proxemics, earlier definitions emphasize different types of 

Table 1. Combinations of information visualization tasks (excerpt from [16]) and proxemics categories (excerpt from [24]). The symbols #1, 
#2, and #3 refers to design opportunities that are tested in the second part of the paper. 

 

Information visualization task 

Visualize Filter Sort Select Navigate Coordinate Organize 

P
ro

xe
m

ic
s 

ca
te

go
ry

 

Distance Show details 
when close/ 
aggregates 
when far (#2) 

Filter items 
depending on 
the physical 
distance to 
user (body 
fisheye) 

- Distance 
increases  
selection 
scope (#2) 

Focus and 
demagnified 
context at 
distance 
 

Brush-and-link 
close data 

Distance-
dependent 
workspaces 

Orientatio
n 

Visualize for 
different 
viewing 
angles 

- Sort by 
variable 
selected by 
orientation 

Coarse 
selection by 
orientation 

Head 
orientation 
controls zoom 
center (#1) 

Indicate 
related areas 
through 
orientation 

- 

Movement Switch 
between 
encodings 
by moving 
(#2) 

Dynamic 
querying when 
moving 
(#3) 

Sort by 
variable 
selected by 
movement 
(#3) 

Coarse 
selection by 
movement 

Zoom and pan 
by moving 
relative to 
display plane 
(#1) 

Selected 
views move 
along with 
user (#3) 

Reorganize 
windows in 
workspace 

Location Contextual 
visualizations 

Switch between 
subsets 

- - Overview and 
detail in left to 
right 

- Location-
dependent 
perspectives 
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proxemics. We chose the much cited taxonomy of proxemic 
interaction [13], because it captures the relations between people and 
devices like large displays, which is our focus. With respect to 
information visualization, a host of alternative models exist. We 
decided against relatively low-level models (e.g., [1] of information 
visualization because we think the initial promise of proxemics is to 
enhance higher-level tasks. We also decided against taxonomies 
focused on data (e.g., [24,45]), because they were not easy to 
combine with the proxemics taxonomy. Finally the visualization 
taxonomy used integrates many aspects of earlier work, for example 
including most tasks in Shneiderman’s task by data type taxonomy 
[45]. 

The resulting design space does not include all categories: Some 
categories of proxemics are less applicable to single-person 
interaction with visualizations on a large display (e.g., Identity). 
Similarly, some visualization tasks do not map well to proxemics 
(e.g., Derive). The opportunities presented here are intended to 
generate design ideas. Other possibilities exist that could be more 
useful than the examples given here. 

2.1 Distance 

Viewing distance is important in using information visualization on 
large high-resolution displays: Users can step back to get an 
overview and to navigate [2] or to see patterns in data [8]. However, 
earlier work has mainly studied visualizations that do not change 
with user’s distance. Vogel et al. [52] is a notable exception as they 
adapt visual representations and interaction modes to discrete 
distances. Below we describe how visualizations can adapt and react 
to distance for particular visualization tasks.  

Visualize. Visual encodings may dynamically change with the 
user’s distance. Different tasks can thus be supported at varying 
distances, for instance by showing aggregate representations at a 
distance and details up-close. This is illustrated in Fig. 7, where each 
level of aggregation is associated with a discrete distance zone. The 
alternative, combining the data in the same static visualization, can 
overload the display and potentially overwhelm the user. While we 
focus on the spatial distance between user and display, the distance 
of a hand-held display relative to a large display could similarly be 
used for semantic zooming in for instance graph visualizations [49]. 

Filter. Distance can be mapped to a variable so as to allow 
filtering out data. For instance, adapting the generalized fisheye view 
[11] to a large display, could help users focus on the most relevant 
items; items are filtered out if they have a degree-of-interest below a 
threshold that grows proportional to the user’s distance to the 
display. More interesting items can be made prominent or shown in 
detail at a distance while other items are aggregated. 

Select. Distance can influence the scope or granularity of user’s 
selections. For instance, Peck et al. [38] describe a multi-scale 
interaction technique that “chang[es] the user’s scale of interaction 
depending on their distance from the current object(s) of 
interaction.”  

Navigate. One possible visualization that adapts to large displays 
for supporting multi-scale navigation is focus+context: As the user 

steps back from the display, selected elements in focus can be 
magnified to remain a constant size in the user’s field-of-view; in 
effect those elements are brought closer together, for instance to 
support comparison, while the context is demagnified (rather than 
being filtered out as done in the generalized fisheye view discussed 
above). This is illustrated in Fig. 1. Another idea is to relate distance 
to zoom-level, so that when a user moves away from the display, the 
zoom level changes.  

Coordinate. Whereas most coordination of views relies on 
explicit actions [36], distance to particular views in the display may 
provide for implicit coordination. For instance, depending on which 
graphs that are close to the user, they could automatically become 
linked, so that data points selected in the one are highlighted in the 
others.  

Organize. Views can be reorganized for interaction when the user 
stands within touching distance of the display (e.g., showing data 
views and widgets for dynamic querying), while larger overview-
providing views are shown when the user is standing at a distance. 

2.2 Orientation 

Although orientation is used extensively in virtual reality, it is rarely 
seen in research on information visualization. Research that comes 
close are the ChairMouse [9], which used the users’ rotation on a 
chair to control cursor movement, and the study by Bezerianos and 
Isenberg [4], who looked at the role of angle and movement in 
perception on large displays. Neither study used orientation to adapt 
visualizations.  

Visualize. Visual encodings that become distorted at extreme 
viewing angles cause problems [7]. A visualization can dynamically 
change to a visual encoding that is more robust to extreme viewing 
angles, based on its orientation toward the user. Related techniques 
are E-conic, which dynamically corrects the perspective of windows 
[29], and Screenfinity, which rotates, translates, and zooms content 
to ease reading while users pass by large displays [42]. 

Sort. Ordering data helps reveal trends or clusters of values. The 
most common method of ordering, sorting records by one or more 
variables [18], could be supported by detecting the user’s orientation 
toward a particular variable (e.g., a column in TableLens). 

Select. Orientation may supplement other pointing input for 
selecting data points in visualizations. For instance, a user’s motor 
space with a pointing device can map to a particular view, which is 
selected by changing orientation (see Fig. 2). 

Navigate. Orientation may control navigation by giving 
additional information about the user’s current focus. For instance, 
orientation may be used to enrich the parts of the display that the 
user focus on or (as will be experimented with in study #1) to control 
the point around which zooming is performed. 

Coordinate. Orientation can support exploration across views. 
For instance, body and head orientation can be used together for 
indicating distinct areas of interest, so that relations between data in 
those areas can be visualized.  

            
Fig. 1: Distance-based focus+context: Focus elements are 
selected (outlined in red) while up close (left). As the user 
steps back, the focus elements are magnified (right). 

Fig. 2: Selecting view by 
changing orientation relative to 
the display. 

Fig. 3: Changing a dynamic query 
slider by moving. 
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2.3 Movement 

Visualize. Study #2 will present an example where movement is used 
to change the encoding of visual representations. 

Filter. The spatial relation between the user and a dynamic query 
slider can be used for filtering. By mapping the user’s position to the 
slider in the display, the user can move relative to the slider in order 
to change the value. For instance, in Fig. 3 the user’s lateral position 
maps to a timeline: in that way, the user can move right towards the 
most recent data. 

Sort. In study #3 we explore the use of movement to select a 
variable for sorting a table of data items. 

Select. Movement could be used for coarse selection of a view in 
order to help users select data points in a visualization. 

Navigate. Users’ physical navigation in a large display can be 
further supported through view manipulations. For instance, physical 
navigation can be extended through movement-based zooming and 
panning: moving forward to zoom in and back to zoom out; moving 
sideways to pan. This is related to work in virtual reality that have 
used omnidirectional treadmills to allow movement (e.g., [41]); such 
studies have typically strived to make rendering of the virtual reality 
smooth and realistic, not to use movement to adapt interactive 
visualizations. 

Coordinate. Selected views could move with the user’s position, 
for instance to allow comparison across views that are otherwise too 
far apart to be viewed simultaneously. 

Organize. Manually reorganizing visualization views, legends, 
and controls can be tedious, particularly on a wall-display. However, 
related views and legends could be automatically reorganized 
depending on the user’s movement relative to the workspace in order 
to fit the user’s focus in a task.  

2.4 Location 

Visualize. Facilities for creating new visualizations could leverage 
contextual information from the location so that they are tailored to 
that particular context. 

Filter. Visualization views could be filtered to show different 
subsets of the data as the user’s switches location. 

Navigate. To aid navigation, different visualizations that are 
aimed at taking a broad view of the data (overview) and at specific, 
detailed investigations of parts of the data (details) may be anchored 
to different physical locations. For instance, having an overview 
perspective on the left part of a large display would allow the user 
with custom visualizations tailored for coordinating several detailed 
investigations on the right part. 

Organize. Different configurations of views may be shown at 
different locations in order to give different perspectives of the data 
(e.g., when the user stands near the left side of the display, the rest of 
the display changes to show information related to the views at that 
location) or to provide stations for different activities (e.g., 
monitoring while seated in a certain part of the room).  

2.5 Prototyping and testing opportunities and options 

The techniques that we prototype and test in the next section present 

a sample of the design space (see Table 1) selected to probe 
interesting options. First, we wanted to study one of the simplest 
cases of linking proxemics and visualization: linking movement of 
the body to zooming and panning. It is unclear if continuous or 
discrete measures are most appropriate in that case, and also whether 
to base interaction on absolute or relative movement. Second, we 
wanted to compare continuous measures of proximity (e.g., 
controlling filters through movement) to discrete measures (e.g., 
levels of aggregation for discrete distances). Third, proxemics may 
be used to control fluid visual transitions (e.g., zooming, panning) 
and discontinuous changes (e.g., change encoding, linking 
movement to selection of variables). We wanted to see if either is 
more useful or more sensible linked to proxemics data. Fourth, a 
potential use of proxemics data is to make things appear to be 
constant size (adapting for instance a graph based on distance) or in 
the same relative location (e.g., always near the users right arm). We 
wanted to explore such effects. In sections 4.1, 5.1, and 6.1, we 
explain the designs we have studied in detail. 

3 OVERVIEW OF USER STUDIES 

Whereas the exploration of design opportunities has identified novel 
and interesting designs, it has not provided any data about the 
usefulness of such designs. Next, we therefore present three user 
studies aimed at obtaining such data. The studies aim to provide 
initial, qualitative data about usefulness by having participants use 
and compare designs. The studies are lightweight (i.e., each 
participant interacts for about 40 min) and formative (i.e., qualifying 
and developing design opportunities rather than finding a “best” 
option).  

This choice of method requires justification. The overall aim of 
the present paper is to explore design opportunities. We therefore 
decided against running a controlled experiment, as done in many 
evaluations of information visualizations and of proxemics 
[19,22,55]. Instead we wanted to gain empirical insight on a range of 
design possibilities. We also wanted to avoid rushing to 
experimentation (as warned about by Shadish et al. [44] and 
Greenberg and Buxton [12]). We decided against some of the other 
methodologies for evaluating information visualizations [6] because 
they mostly assume a hi-fidelity and well-defined design or require a 
specific application domain, task set, or user base. The former is not 
the case for the combination of information visualization and 
proxemics, and the latter seemed to constrain finding and developing 
design opportunities. 

3.1 Commonalities of the studies 

The three user studies presented next have a common structure (see 
Table 2). First, they all have six participants. This number is often 
recommended for formative user studies [35] and while it gives low 
power (in the sense of being able to detect quantitative differences, 
see [7]), it does allow us to gain qualitative insights about usefulness. 

Second, all studies use one or two combinations of 
proxemics/visualization and a reference interaction style. It has been 
shown that users generate more comments when exposed to several 

Table 2. Overview of user studies. Categories refer to the information visualization tasks and proxemics categories in Table 1. 

Study Categories Users Interfaces Tasks Data 

#1 [Navigation] + 
[Move, Location] 

6 (a) Absolute: Navigation by absolute movement 

(b) Relative: Navigation by location 

(c) Baseline: Virtual navigation with gyro mouse 

Three tasks involving 
maps, adapted from [8], 
[41] 

Map from 
OpenStreetMap 

#2 [Visualize] + 
[Dist, Move] 

6 (a) Distance-controlled detail/aggregation 

(b) Baseline: Interaction with gyro mouse 

Five tasks adapted from 
[43] 

Data sets of 1000-3000 
homes (5 attributes) 

#3 [Filter, Sort] +  
[Dist, Move] 

6 (a) Position-controlled variable selection and 
brushing 

(b) Baseline: Interaction with gyro mouse 

Five multi-variate 
analysis tasks [39] 

406 cars (8 attributes) 
[44] 



Paper II 

166 

alternatives than to just one [50]. 
Third, we collect qualitative data from the studies. In addition to 

capturing preference data, we have at least two persons observing 
users while interacting: the observers take time stamped notes that 
can be referenced and coupled to video recordings during analysis.  

Fourth, while the studies are formative, we prescribe tasks for 
users to solve. The idea is to ensure that they engage in demanding 
tasks so as to experience and be able to discuss the usefulness of the 
interaction styles. All tasks were adapted from previous studies of 
information visualizations.  

3.2 Participants 

In all, 18 participants (4 female), ages between 23 and 37 years (M = 
29.8), were recruited by word of mouth; six participants for each 
study.  

3.3 Procedure  

The procedure was similar across studies. Participants were 
welcomed to the study, and informed of its purpose. They were 
introduced to the wall-display and the interfaces, and the tasks were 
explained to them. Participants then completed a set of tasks with 
each interface. For each interface, the experimenter first explained its 
use and participants were given time to try using it. Participants were 
then given the tasks, one at a time. They were encouraged to ask 
questions during the experiment. After completing the last task with 
an interface, we asked participants about their experience with the 
interface they had just used, including its benefits and drawbacks. 
Finally, after having completed all the tasks, participants were 
interviewed about each of the forms of proxemic interaction 
provided by the interfaces.  

3.4 Data analysis 

Sessions were video recorded and the experimenter and one or two 
additional data loggers took notes. Each study was analyzed 
immediately following its last session using the Instant Data 
Analysis technique [25]. For the analysis, the experimenter and the 
data loggers gathered in front of a whiteboard. Observations from the 
notes and comments from interviews were discussed. When an 
important issue was identified, it was written on a post-it note and 
put on the whiteboard. The notes were categorized into themes. 
Based on the clusters of post-its on the whiteboard, the most 
important findings were written down with clear references to the 
observations and any supporting video recordings. On average, the 
analysis session lasted around two hours. 

3.5 Technical setup  

Participants used a 24 megapixel display that measures 3m×1.3m. 
The display consists of 4×3 tiles projected from the back by 
1920×1080 projectors. Projectors are manually aligned so as to 
minimize seams between tiles. The display was run by a single 
computer running Microsoft Windows 7. The room in which the 
display was set is 3.5m wide and the distance from the display to the 
back wall is 2.95m. 

For input we used a NaturalPoint OptiTrack motion capture 

system (www.naturalpoint.com/optitrack/) that tracks, via reflective 
infrared markers attached to a baseball cap, the location and 
orientation of the participant’s head. Participants also used a wireless 
gyroscopic mouse. The mouse cursor was enlarged to its maximum 
size. 

4 STUDY #1: NAVIGATION BY PHYSICAL MOVEMENT 

The first study investigates the potential of using physical movement 
in the zoom+pan visualization technique.  

4.1 Conditions 

Three variations of a zoom+pan interface were used for navigating 
geographical maps. In all conditions, a Gyro mouse was used for 
interacting with targets in the tasks. 

4.1.1 Absolute: Navigation by absolute movement 
This interface uses a direct mapping between participants’ movement 
and movement of the map. The user moves toward the display in 
order to zoom in (i.e., to see details) and away from the display to 
zoom out. This is illustrated in Fig. 5 (a-c). Movement is combined 
with head orientation for zooming. A crosshair indicates the point 
where the ray cast from the cap worn by the user intersects the 
display, and zooming is centered on that point. Lateral movement 
controls horizontal panning: Moving left causes the map to move 
right; moving right causes the map to move left. Our initial intent 
was to map floor position directly to map position. However, to keep 
panning speed at a reasonable pace when the user is close to the 
display (i.e., at high zoom factors), we reduced the floor-to-map 
movement ratio. This restricts the panning range when close to the 
display. Head orientation is used for panning up and down. Pitching 
the cap so that the ray intersects the display plane above or below the 
display causes the map to pan vertically at a fixed rate.	
4.1.2 Relative: Navigation by location 
In this interface, participants control zooming and panning by 
moving relative to a 75x75 cm rectangular region in the center of the 
floor, illustrated by Fig. 5 (d-f). The map moves right when the 
user’s body is left of the region; moves left when the user’s body is 
right of the region. Similarly, the map zooms in when the user has 
stepped toward the display from the center region; zooms out when 
the user has stepped backwards from the center. The zoom rate is 
inversely proportional to the zoom level so that when zoomed in to a 
detailed level, the zoom rate is lower. The use of head orientation for 
zooming and for vertical panning is similar to Absolute.	
4.1.3 Baseline: Virtual navigation using mouse 
In this condition, the user operates the interface using only the gyro 
mouse. The interface resembles widespread mouse-operated map 
interfaces (e.g., Google Maps): The map is panned by clicking and 
dragging with the mouse; the map is zoomed by rolling the mouse 
scroll wheel. Mid-air input techniques for zoom+pan interfaces [34] 
allow more efficient navigation than the baseline interface we used 
here. However, we did not aim for performance, but rather a simple-
to-use mouse-based interaction style that we expected users to be 

Absolute Relative 

      
(a)  (b) (c) (d) (e) (f) 

Fig. 4: Zooming in the two conditions that use proxemics in Study #1. In Absolute (a-c), the zoom level increases as long as the user keeps 
moving toward the display, and stops zooming when the user stands still. In Relative (d-f), the zoom level increases, at a constant rate, as long 
as the user is within the zoom zone (e). Zooming is centered on a crosshair, which indicates the point where the ray cast from the user’s head 
intersects the display. 
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familiar with. 

4.2 Tasks 

Participants performed a series of tasks using a map obtained from 
OpenStreetMap (www.openstreetmap.org) at different scale levels. 
The following types of task adapted from [19,46] were used:  
 Navigate: Participants had to navigate to a clearly marked target 

and click on it with the mouse. Then a new target was shown, 
until participants had navigated to ten targets. 

 Trace: Participants had to trace a railway, where targets were 
placed close to ten selected stations. Participants had to move 
each of the pins onto the station using the mouse.  

 Search: Participants were handed a description on paper of a 
location (e.g., “Near ‘city’ find ‘lake’”) and they had to point out 
the location. Participants were given three locations to search for. 

4.3 Results 

We present only results that relate to the use of movement and 
location to control navigation. In the instant data analysis, four 
themes emerged. 

4.3.1 Using your body for navigation was liked 
Several participants said they liked controlling navigation with their 
body: it is a “nice concept to use your body to move” and “it is nice 
that you move a lot, particularly in a work environment”. Reasons 
for this view varied. Two participants mentioned that movement was 
intuitive, three that movement required less effort than the mouse, 
and two perceived movement to be faster than using the mouse. 

4.3.2 Observed benefits and drawbacks of using body 
We saw much movement in the Absolute and Relative conditions. 
Body movement was expected as it controlled navigation. Some 
observations were nevertheless surprising. One participant 
transformed the navigation task of finding and clicking an object at 
high magnification to a smooth movement from the back of the room 
(zoomed out) to the display (zoomed in). Several participants moved 
to the back of the room in preparation for receiving the next task. 

We noticed a lot of awkward movement. Some participants 
moved very slowly, some expressed uncertainty about the size of 
steps to take. Also, movement of your body is difficult to use for 
fine-grained navigation and it is hard to stop panning as quickly as 
with a mouse. Some participants adopted particular movement types 
to deal with these limitations. Three participants leaned rather than 
moved to control location; two participants kept a foot in the center 
of the Relative condition while lunging forward or to the sides (one 
participant mentioned the similarity to dance-mat games). 

4.3.3 Movement versus location 
A key difference among conditions was the use of movement for 
navigation versus using location for navigation. Participants were 
split in their preference for either technique (movement: 3; location: 

2; one undecided). 
Navigation by movement was well received. Two participants 

commented that this technique was intuitive, in particular because 
there was a direct relation between your movement and what 
happened on the screen. Another difference was the freedom to move 
around. With Absolute, one participant found “a lot of freedom to 
move all over the place”; two participants contrasted this with 
feeling “restricted” and unable to “move freely” with Relative. 

Navigation by location was liked for several reasons. One reason 
was that “zooming was nice here” because one could zoom without 
getting too close to the screen; when using movement to zoom, 
participants by definition were close to the screen when they had 
zoomed a lot. One participant mentioned the benefit of a stable 
center, in contrast to navigation by movement where the display was 
changing much of the time. However, participants had to keep track 
of their position relative to the center. They described how you were 
“fixed to the center” and that it “requires concentration to keep track 
of zones”. 

4.3.4 Design ideas and variations 
Several design ideas came up. Rate control was mentioned as an 
improvement for Relative, so that the speed at which panning and 
zooming was done depended on your distance to the center point. 
This would increase the issue of small movements causing large 
steps in navigation, which is why we did not implement it in the first 
place. 

Movement did not control all aspects of navigation in Absolute or 
Relative. Head pitch was used to control panning up/down, which 
caused unintended panning when participants looked down. 
Participants suggested the use of alternative means for controlling 
panning, for instance by using gestures. 

5 STUDY #2: ADAPTING REPRESENTATIONS TO DISTANCE 

The second study investigates adapting visualizations based on the 
user’s distance and location.  

5.1  Conditions 

Two variations of a map-based visualization of real-estate data were 
used. The visualization allows the user to vary the visual 
representation of the data (individual homes or geographic areas) and 
to select areas for calling up details on demand. A diverging color 
scale is used to indicate how the value of an attribute, which the user 
can select from a menu (e.g., price per m2), is above or below the 
mean value of that attribute.  

5.1.1 Distance-based aggregation and details on demand 
 This condition uses distance and movement. First, distance-based 
aggregation changes the visual representation based on the user’s 
distance to the display (see Fig. 7). At less than .75m, individual 
homes are shown as points. As the distance increases, the 

 
(a) Aggregate, municipalities 

 
(b) Aggregate, postal districts 

 
(c) Individual homes 

Fig. 6: Techniques used in Study #2: Distance-dependent aggregation of real-estate data by geographic area in (a) and (b); details on 
demand for geographic areas in (a) and (b), and for individual homes in (c); multi-scale selection of map area.  
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representation changes to show data aggregated on geographic areas 
(.75m: postal districts; 1.25m: municipalities; 1.75m: regions), and 
using larger font sizes. Transitions between representations use alpha 
blending over a 20cm distance. Second, movement-based Excentric 
Labeling [10] gives details about homes within a selection box that 
follows the user’s position horizontally and moves vertically with the 
pitch of the user’s head. Third, for multi-scale interaction [38], the 
selection box grows in size with increasing distance and details are 
shown for data at higher scales: homes, districts, or municipalities. 
Fourth, movement-based change of color encoding. When the user is 
more than 2.5m away from the display, the attribute menu (shown in 
the top-center area of the display) responds to the user’s lateral 
movement: Moving left or right causes an indicator to move to 
another attribute that will be color-encoded. 

5.1.2 Baseline: Gyro mouse 
In this condition, the user operates the interface using only the gyro 
mouse, that is, for changing the visual representation of home data 
and for selecting the area of the map for which details are shown. 
The mouse scroll wheel maps to distance in the other condition: 
scrolling the wheel changes the representation, the size of the 
selection box, and the level of details that are shown. The four 
representations of home data are placed on a vertical slider in the left 
side of the visualization, with an indication of the representation that 
is currently shown. The selection box is moved with the mouse 
cursor (that is, while the mouse trigger button is pressed); and details 
remains fixed when the user stops moving the mouse cursor. 

5.2 Tasks 

Participants performed the following tasks, some adapted from [53], 
with subsets of a real-estate database: 
 Find the region that has the lowest average price per m2 (or 

lowest average number of rooms). 
 Find the municipality in a given region that has the highest 

average asking price (or largest average area). 
 Find the home in a particular postal district that has the largest 

area (or smallest area). 
 Find the postal district in a particular municipality that has the 

highest average price per m2. 
 Find the most expensive house in two (geographically remote) 

municipalities. 

5.3 Results 

Three themes related to distance and movement emerged in the 
analysis. 

5.3.1 Use of distance makes sense and "works well" 
Four participants described the Distance condition as natural, 
intuitive, and making good sense. For instance, one said it was 
"natural to use the body", another that it was "intuitive to get more 
information in less space when up close. It works very well."  

In relation to aggregation of data with increasing distance, one 
participant said that it was nice that there was not much data when 
standing back. 

Several participants seemed to change between representations 
with ease by moving. In particular, we observed three participants 
that moved back and forth repeatedly to switch between 
representations for solving tasks that involved relating homes or 
districts to municipalities. Changing representations using the mouse 
seemed less fluid, and participants glanced more often at the slider at 
the left. 

5.3.2 Discrete distance zones versus free movement 
However, using distance did not work equally well for all 
participants. For instance, one participant said that although it was 
natural to move, he had to think more while moving than using the 
mouse. Another said that she had to remember to stand still at a 
distance.  

One drawback, which was clear from our observations and from 
participants’ comments, relates to the discrete distance zones: To see 
certain information, the user is bound to a certain distance. From our 
observations this was a problem for one participant in particular, 
who said that it is "natural to step back for overview, but then the 
data I want to overview disappears." In the mouse condition, this 
participant solved the tasks while standing noticeably farther from 
the display than the other participants: He read details about 
individual homes from around 1.5m distance. Other participants 
made related comments. One said you have to get close to see details 
on individual homes, but then “up close, I had trouble keeping an 
overview of it all.”  

5.3.3 Details-on-demand too sensitive to movement 
All the participants said they liked the mouse better for selecting the 
area to show details. One reason is that the mix of using body 
position and head orientation for selection was confusing.  

Participants suggested different ways of improving details-on-
demand based on movement. Three participants said that they 
wanted to use their hands to “lock” the view of details or for 
selecting houses, when they were within reaching distance. Also, two 
participants suggested leaning close to lock the view of details. 
Details on proximity, or using head position relative to body 
position, could be a promising design variation. 

6 STUDY #3: DYNAMIC QUERY BY MOVEMENT 

The last study investigates the use of movement for attribute 
selection, brushing and linking, and filtering of multivariate data. 

6.1 Conditions 

 Participants used two variations of an interface containing multiple 
coordinated views of data about cars. The interface comprises a 
window containing nine scatterplots and a data table, a view showing 
a histogram for an attribute, and a view listing the available 

 
(a) 

 
(b) (c) 

Fig. 8: Techniques used in Study #3: User brushes the bars in a histogram by walking sideways, (a) to (b); the views move to stay in front 
of the user. The user then moves backwards in order to select another attribute (c); the views scale to remain at a readable size. 
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attributes. If the user selects an attribute from the list, the histogram 
for that attribute is shown and the data table is sorted by that 
attribute. For visualizing the histogram, the values of most attributes 
were binned to produce 10 bars. For attributes with less than 30 
values, each value had its own bar (e.g., model year of cars span 12 
years). Histogram bars can be selected: the corresponding data points 
are shown by filtering the table and marked red in the scatterplots.  

6.1.1 Position-controlled variable selection and brushing 
This condition uses distance and movement. First, the attributes in 
the list are mapped to discrete distance zones, 1m (the first attribute) 
to 2.5m (the last attribute) from the display. The user selects an 
attribute by moving closer or farther from the display, shown in Fig. 
9 (b-c). In the attribute list, a circle indicates the user’s position 
relative to the attribute zones. Hysteresis tolerance is used for 
transitions between the zones of two variables: The user enters and 
exits a zone at separate distances. This helps avoid 
unintentional switching back and forth between two attributes. 
Users’ sideways movement is used for brushing over bars in the 
histogram: The user's position along an axis parallel to the display 
maps to the x-axis of the histogram, see in Fig. 9 (a-b). One bar is 
selected at a time. The physical space for brushing (from leftmost to 
rightmost bar) spans 1.65m in the center of the display. To enable 
users to read the data while they move, the views are scaled 
depending on the user’s distance. Also, the window containing the 
table and the scatterplots is positioned according to users’ position. 
The other views remained fixed. 

6.1.2 Baseline: Gyro mouse 
In this condition, the interface is operated using only the gyro mouse. 
Attributes can be selected from the list by pointing and clicking with 
the mouse cursor. Histogram bars can be brushed by clicking on the 
bars. Views are fixed in a size corresponding to standing 1.5m from 
the center of the display in the Position-controlled condition. 

6.2 Tasks 

Participants performed five types of task adapted from [54], using a 
dataset with eight attributes for 406 cars [40]: 
 Find the car that has the most power among Ford cars. 
 Is there a correlation between engine power and weight? 
 Does Dodge make more car models than other American 

manufacturers? 
 Please categorize car models into two types: one consisting of 

cars with poor mileage and one consisting of cars with good 
mileage. Try to take model year into account. Which has most 
models? 

 State the conditions for your ideal car and identify it using the 
interface. 

6.3 Results 

Three themes related to distance and movement emerged from our 
analysis.  

6.3.1 Physical mapping of data 
Participants liked the idea of mapping physical space to data space. 
After having used both conditions, one participant said: “Distance 
for selection of variables seems very natural”; another described it as 
fun, but said he felt more efficient when using the mouse. 

Participants were split on preference for using movement and 
using the mouse; all suggested combining the two forms of 
interaction, one reason being that they could change variables using 
the mouse. They also suggested adding a lock to position tracking so 
as to be able to approach the display or step back from it. One said 
“[I would like to] be able to lock such that I can walk closer to 
something and then unlock it again”; another that “[I would like to] 
be able to lock variable choice such that you don’t change in error, 
when you are busy.” One participant demonstrated this by taking off 
the tracking cap so that he could move without changing a variable.  

One reason why participants wanted such a lock was because 
they found it difficult to keep the attribute selected while moving 
sideways to brush bars. Participants were observed to “drift” in 
distance to the display while brushing; this could result in abrupt 
changes of selection. It seems this issue caused some participants to 
move more cautiously and to look at the histogram. 

6.3.2 Scaling 
Four participants disliked the way the views were scaled and 
positioned depending on location. They suggested instead a fixed 
size (and using a locking mechanism as suggested above to be able 
to look closer at an item). Three participants suggested that the 
location-dependent scaling and positioning could be improved by 
moving and scaling in discrete steps, instead of continuously. 

One participant got confused when pointing at the scatterplots, 
because it scaled when he walked closer to the display while doing 
so. This participant proposed zooming in when approaching the 
display (similar to the absolute condition in Study #1). In the 
baseline condition, several participants moved close to the data to 
point at it.  

6.3.3 Thinking physically about the data space 
Two participants used physical descriptions of the data space. For 
example, one participant said: “Let me see what is out here”, 
another: “I was in kind of a lane where I could filter instead of 
clicking with a mouse.” That participant added: “It feels navigable,” 
and considered that the way he had the attributes mapped to the floor 
space, he would be able to “Go to cars with large engines”. 

7 DISCUSSION 

We have explored opportunities for using body movement to interact 
with visualizations on large high-resolution displays and we have 
tested several of them. In particular, we have relied on the notion of 
proxemics [15] and a particular set of visualization tasks [18]. 
Overall, the three user studies provide initial data in support of the 
idea of using movement and distance to change visualizations. 
Participants in all studies said that using body movement was 
intuitive or natural.  

Specifically, changing the visualization in response to changes in 
the user’s distance to the display seemed useful. In Study #1, 
participants moved closer to the display for zooming in; in Study #2, 
participants moved closer to see data represented in higher detail 
(“more data in less space”). Changes to zoom level and 
representation made sense to several participants, maybe because it 
relates to the experience of physically zooming out and seeing less 
detail (due to visual acuity). In contrast, scaling views with user’s 
distance worked contrary to the expectations of some participants 
(Study #3).  

Based on observations and feedback from participants, potential 
benefits of proxemics-based zooming and aggregation are reduced 
effort and more smooth interaction compared to mouse control. 
Proxemics-based control also seems to allow navigation in or 
manipulation of many variables at a time in a natural way.  

Another opportunity is the use of body movement for dynamic 
querying: In Study #3, we mapped the user’s movement to selection 
of attribute values. One benefit observed for several participants, was 
that they could fix their focus on the data views while changing the 
selection by moving their body.  

The studies also showed how using proxemics and visualizations 
together may give a distinct physical sense to abstract data. Study #3 
differed from the other two in that movement was mapped to abstract 
data rather than spatial data. We note that the proxemics mappings 
used here did not directly reflect spatial relation between the user and 
the on-screen data range (as does Fig. 3), rather the data range was 
mapped onto the floor. The study revealed some interesting 
interactions nonetheless: You can step back to get an overview or 
walk to the left-hand side of the display to re-find previously seen 
details. The purpose of our empirical studies was not to provide 
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detailed experimental data on the cognitive benefits of proxemics in 
visualization, but we think exploring this is important future work. 

Our studies also suggested a need to get the fine details of 
interaction right. Participants needed a way of locking, both when 
using orientation and when using their body to change views: 
Leaning forward, close to the screen, could lock the screen. Such 
interactions could derive from more sophisticated proxemics data for 
distinguishing between relative poses of different parts of the body 
(e.g., shoulder relative to torso or hip) in addition to distance. 
Alternatively, users could have discrete zones for interacting through 
touch (close to the display) and for navigating through movement of 
the body (farther from the display). Also, proxemics-enhanced 
visualizations in our studies occasionally had unintended 
consequences: When participants in Study #3 moved to brush 
coordinated views, they sometimes changed the attribute 
unintentionally. Giving users more feedback on the sensed 
proxemics data might alleviate some of these problems. Vogel and 
Balakrishnan [52] also found that users were sometimes unsure 
about the exit threshold of a distance zone. 

The idea of using proxemics for interacting with information on 
large displays is not new. Recent work has for instance demonstrated 
use of discrete distance zones for changing layout and representation 
of information [3,52]. The present work differs from previous work 
by explicitly relating proxemics to information visualization tasks; 
the studies demonstrate mapping of movement, orientation, and 
distance (continuous measures as well as discrete zones) to visualize, 
filter, sort, select, navigate, and coordinate tasks.  

Also, whereas previous work has investigated mainly static 
visualizations on large high-resolution displays [2,8,55], the present 
research has investigated physical navigation for interactive 
visualizations, which presented new opportunities. For instance, 
Endert et al. showed that different encodings offer varying support 
for visual aggregation and thus impact the effectiveness of large-
display visualizations [34]: “To support physical navigation, 
encodings need to have a balance between the expressiveness of 
glyphs and good visual aggregation properties.” However, the 
findings from the present studies suggest that alternative designs are 
possible that allow users to benefit from different encodings at 
different distances and from more generally changing visualizations 
through movement.  

Our studies suggest several avenues of future work; in particular 
we want to highlight three of these: (a) We have prototyped and 
evaluated uses of movement and distance for information 
visualization, but uses of other proxemics categories need to be 
explored in more depth, as well as combination of proxemics-driven 
interactions with other input (as already discussed above); (b) our 
aim was not to empirically understand the cognitive benefits of 
proxemics in visualization, this is important future work; (c) we have 
focused on single-user interaction, but proxemics may help us design 
visualizations for multiple users. To help doing so, future work 
should relate proxemics to research on collaborative visualization. 

8 CONCLUSION 

The present paper has presented findings from initial probing into 
proxemics-based interactions with visualizations. We intend to 
experiment further with combining proxemics-driven interactions 
and other input for information visualization; the studies presented 
here are intended to lend credibility to the hypothesis that it is useful 
(and even pleasant) to control and interact with visualizations using 
ones body movements. 
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F3: Fast, Fluid, and Flexible Data Exploration on 
Large and High-Resolution Touch Displays

Søren Knudsen and Kasper Hornbæk

   

Fig. 1. The photo in the figure’s center shows domain experts using F3 to explore age distributions of patients admitted in relation 
to pregnancies. The photo shows: (1) they created an overview of treatments. (2) from this view, they explored treatment group 14, 
which relate to pregnancy and labor. This resulted in a view (not shown) showing different treatments of this group. (3) they 
reconfigured this view to show age distribution. (4) they explored the group of patients from 20 to 39 years, which resulted in another 
view. (5) they exploded this view by regions to understand how age compared across regions, resulting in the long view centered 
on the display in the photo, which shows that women in the capital region are older when they have children, compared to other 
regions. 

The stylistic sketches to the left and right of the photo show two of F3’s interactions techniques. The left sketch shows that dragging 
data fields from a menu and releasing them on the background, creates a view. The right sketch shows that dragging data bars 
from a view and releasing them on the background, creates a view drilled down on the data bar. 

 
Abstract—While large, high-resolution displays with touch are becoming available, visualizations on such displays rarely use 
expressive gestures and abundant display space. This paper describes F3, a system tailored for data exploration with touch on 
large, high-resolution displays. The design of F3 was informed by inquiries with a group of domain experts that analyze healthcare 
data. The touch interactions let users create new visualizations and combine parts of existing visualizations. After introducing F3, 
we present two studies of the system. First, we evaluated the usability of F3 in a laboratory study. Results suggest that users were 
able to use F3 for data exploration and that they valued its ease of use. Second, we evaluated the utility of F3 for data exploration 
in a field study, where the group of domain experts used the system over two weeks. The field study shows that the domain experts 
could construct hypotheses, and generate and execute strategies quickly — supporting ad hoc discussions and question answering 
during meetings. These findings contrast domain experts’ descriptions of hours of trial-and-error with their current tools. 

Index Terms—Large high-resolution displays, interaction techniques, user study, visualization, lab study, field study, multi-touch

INTRODUCTION 

Large, high-resolution displays with touch input capabilities are 
becoming widely available. Visualizations on such displays promise 
to advance collaboration on exploratory analysis of large data sets. 
However, we see two barriers to these improvements. 

First, touch interaction for information visualization is just 
beginning to be explored [33]. Earlier work has shown how to 
integrate touch with specific visualization types (such as scatter plots 
[36], stacked area charts [4], node-link diagrams [15, 37], and bar 
charts [9]). However, these techniques are not tailored to create or 
combine visualizations using touch, nor do they support higher-level 
data exploration tasks with large data sets. 

Second, few interaction techniques use the display space provided 
by large displays. While several studies have investigated how to 
support data exploration on large displays, and have outlined 
promising directions [29, 41, 43], studies that describe designs, 

implementations, and in particular evaluations of specific techniques 
are rare. 

This paper introduces F3: a system designed based on long-term 
collaborations with a group of domain experts concerned with analysis 
of healthcare data. As part of this collaboration, we conducted 
contextual interviews and design workshops, which enabled us to 
design a set of interaction techniques inspired by this domain. The 
goal of the techniques were to ease collaborative exploration of large 
data sets by enabling creation and combination of visualizations (see 
Figure 1). We strived for techniques that are fast, in that actions have 
a short interaction time span, giving immediate reactions to interface 
actions rather than showing intermediary menus; fluid in that the 
system state is clear and prompt feedback is given on interaction 
choices; and flexible in that system elements can be combined and 
results obtained in many ways. 
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F3 provides touch interaction techniques for visualizations on large 
displays. The interaction techniques provide a novel approach to 
querying multi-dimensional data, and support drilling down, filtering, 
and grouping data. We base F3’s interaction techniques on bar charts 
and use direct manipulation to interact with and combine database 
queries using visualizations of previous database query results through 
touch interactions. The techniques aim to provide freedom in choice 
of analysis strategy, which may benefit experienced analysts. F3 
enables users to collaborate while constructing hypotheses, and 
generating and executing strategies quickly — supporting ad hoc 
discussions and question answering during meetings. 

We contribute (i) a set of interaction techniques, that facilitate fast, 
fluid, and flexible collaborative data exploration using touch on large, 
high-resolution displays that were informed by design inquiries with 
domain experts and (ii) two complementary studies that show how the 
techniques support data exploration in the lab and in the field. These 
contributions help advance research on how to support data 
exploration on large displays, but also identify activities in data 
exploration that are not yet well supported in F3 or other systems. 

1 RELATED WORK 

We review three strands of research: (1) multidimensional data 
analysis, (2) visualizations on large displays, and (3) touch interaction 
with visualizations. 

1.1 Multidimensional Data Analysis 

Understanding large data sets frequently involves many visualizations 
and multidimensional data analysis. Dunne et al. [10] highlighted the 
importance of showing links between visualizations that leave a trail 
of visual breadcrumbs that represents their exploration. This supports 
users in understanding the actions that led to a visualization, recall the 
exploration history, and share analyses with others. Such trails provide 
a visual provenance of analysis results supporting users’ analyses in a 
number of ways. 

Stolte et al. described Polaris [39] (and later Tableau [45]) that 
facilitated exploratory data analysis through drag and drop of database 
schema fields. While they presented some interaction with the 
visualizations resulting from queries, they focused on constructing the 
queries, and only showed a single visualization at a time. Tableau has 
introduced possibilities for showing multiple visualization side by 
side, but does not support creation of a new a new visualization 
directly from the visual representation of an existing visualization. 

Gratzl et al. [16] described a meta-visualization technique that 
allowed analysts to build visualizations that were based on smaller 
parts, which are connected with links, thus facilitating analysis of data 
relations through interaction. Elzen & van Wijk [13] presented a 
system that allowed analysts to produce overviews from detail views 
by selecting and aggregating data. 

1.2 Visualizations Tailored for Large Displays 

Information visualization on large, high-resolution displays has been 
the focus of several papers. Such displays allow for co-located 
collaboration, discussion, exploration, and analysis using information 
visualizations by providing a shared workspace with sufficient room 
for both individual and group work. 

In visual analytics, large displays have been used to let users lay 
out and make sense of documents. Isenberg et al. [22] studied pairs 
collaborating on solving a puzzle using Cambiera, a collaborative text 
analytics tool for tabletops. Jacobsen & Hornbæk [26] replicated the 
study with a large, high-resolution display, Andrews et al. presented 
an array of displays for desktop use and suggested that they increase 
users’ ability to carry out data analysis by giving “space to think” [2]. 

In information visualization, the focus has mainly been on single 
visualizations or multiple visualizations fixed at particular spatial 
positions [1]. To our knowledge, Lark [42] is the only system that 
provides free layout of visualizations on a large shared workspace. 
Lark used tree layout visualizations linked in a meta-visualization. 
The meta-visualization showed a visualization pipeline representation 

of the relations between the visualization views. Andrews et al. 
provided the Analyst’s Workspace [3] that supported single-user 
sensemaking on a large display by automatically and with annotation 
showing links between related text documents. Singh et al. showed 
representations of analysis history for web log analysis on a large 
display [38]. Knudsen et al. [29] conducted a series of workshops with 
data analysts from diverse domains, and characterized links between 
visualizations that show analysis history and data processing as trails 
of thought, arguing these support backtracking and fluid exploration 
of alternatives. 

1.3 Touch Interaction with Visualizations 

Touch interaction with information visualizations has recently been 
called for [23, 33]. Such interactions may facilitate close-up work on 
large displays. Several papers have presented ways of using touch to 
interact with visualizations, but combinations of touch and large 
displays are still rare. Baur et al. [4] and Sadana et al. [36] contributed 
touch interaction techniques for stacked area charts and scatter plots, 
respectively. Rzeszotarski et al. [35] studied a physics-based approach 
to interacting with scatter plots. Schmidt et al. [37] and Frisch et al. 
[15] focused on touch (and pen) interaction techniques for node-link 
diagrams. These contributions focused on interaction techniques for a 
single visualization technique (i.e., stacked area chart, scatter plot or 
node-link diagram) and a single view.  

Touch interactions may be used to facilitate data exploration by 
providing intuitive and effortless interaction techniques. Sketchvis [6] 
allowed users to create data-driven charts by drawing on an interactive 
whiteboard, supporting easy exploration of data. In a later study, 
Walny et al. [43] studied combinations of pen and touch input with 
Sketchvis. PanoramicData [44] used pen and touch interactions to 
support data analysis, using a whiteboard metaphor.  

Kondo et al. [30] contributed touch interactions that facilitated 
navigation in time series with direct manipulation on parts of 
visualizations. Nandi et al. described gestures for performing database 
queries [34], focusing on interaction with database schemas, for 
example, to join two tables by dragging their columns together. 

Drucker et al. [9] compared two sets of interaction techniques for 
bar chart interactions: gestural direct manipulation versus menu 
interaction. They discussed how the gestural interface guided 
participants with low experience with data analysis towards solving 
tasks, but at the same time limited more experienced participants. 

1.4 Summary 

The brief review of related work suggests two things: 
First, we see a lack of work that integrates the benefits of touch, 

visualizations, and large displays. Collaborative data exploration 
could benefit from both abundant display space and dedicated 
techniques for manipulating visualizations with touch. We believe 
such benefits could be numerous, and have thus explored such 
possibilities through a series of design inquiries with domain experts. 
We are inspired by the techniques that GraphTrails used to show links 
between visualizations and Analyst’s Workspace that showed links 
between documents. The simple drag and drop interactions 
demonstrated in Polaris and Tableau, and the effortless touch 
interactions in Sketchvis, inspired us to consider how this might work 
with touch interactions. Unlike GraphTrail, we show relations from 
data bars to other visualizations to help users understand data 
explorations in a collaborative context. A large workspace further 
facilitates collaboration and space to arrange many visualizations. 

Second, we believe that support for data analysis tasks on large 
displays are too rarely empirically studied. After presenting F3, we 
report a laboratory and a field study of the use of F3’s interaction 
techniques. We aim to consider a single set of interaction techniques 
and study them over a longer period of time. 

2 F3: FAST, FLUID, AND FLEXIBLE 

We designed F3 based on a three-year collaboration with a group of 
domain experts, who perform analysis and documentation for a 
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nation-wide healthcare organization comprising about 50 public 
hospitals, serving around 6 million citizens, and handling about 13 
million patient contacts annually. We first describe the domain in 
depth to explain how the design of F3 was informed. 

2.1 Domain Experts 

To inform the design of F3, we conducted observations and contextual 
interviews over two weeks at the domain experts’ site to obtain a 
thorough understanding of their tasks. We returned to the site for 
shorter day-visits throughout their work year to understand how their 
work changes in the course of a year. Their work reminds of tasks and 
work contexts characterized by Kandel et al. [27]. The domain experts 
level of expertise covers the hackers to scripters span. 

The domain experts are about 10 employees, and part of a group 
of about 35 employees that work with documentation of healthcare 
services. They have mixed backgrounds, including economics, 
political science, mathematics, statistics, medicine, public health 
science, and computer science. They primarily use SAS, SQL, and MS 
Excel for data analysis. They use visualizations to understand data in 
Excel (e.g., bar charts, line charts, and scatterplots), and communicate 
data externally in static documents and with QlikView. 

2.1.1 Domain Tasks and Data 
The domain experts receive data from all national hospitals at regular 
intervals. The data is primarily used to compute rates for hospital 
treatments (diagnosis related groups [14]), which are based on 
matching hospital activities data to expenses. They publish these rates 
annually, enabling the government to use these rates as basis for 
compensating individual hospitals based on their workload. Figure 2 
shows an overview of these collaborations and computation processes. 

The received data comprise medical activities and financial 
accounts data. Medical activities data describe what has happened at 
a hospital (e.g., patient admittance and discharge dates from the wards 
and blood test meta-data from clinical biochemistry). Financial 
accounts data describe the expenses incurred at a hospital (e.g., doctor 
and nurse salary expenses for each hospital department, implant costs 
for each department, and overhead costs). To compute the rates, the 
domain experts establish the rate foundation table, which combines 
the medical activities and financial accounts data. The table contains 
a row for each patient (~13M/year). Each row describes a patient 
contact (an admission and discharge for inpatients and comparable 
information for outpatients), and comprise columns of patient 
information (e.g., age, gender, diagnoses), treatment information (e.g., 
procedures, duration, ward, hospital), and cost information (e.g., 
diagnosis related group, salaries, overhead). The domain data 
comprises for example: (i) codes describing operation procedures in a 
hierarchy of about 9.000 codes; (ii) hospital and ward definitions in 
another hierarchy of about 20.000 wards, that describe physical 
locations that change both name and id over the years; and finally (iii) 
admission and discharge times that would be expected to be within the 
two years covered in the database, in practice, spanned 44 years due 
to data registration errors. 

The domain experts’ work is characterized by constant adaptation 
to changing healthcare policies. This means that the data they handle 
change on a yearly basis. New information codes are added and 
existing codes may be changed or removed. Changes include addition 
of administrative patient pathway codes, combinations of codes 

describing in- and outpatients, and introductions of new medical 
procedures, thus requiring new description codes. 

2.1.2 Context of Work  
The domain experts work in an informal work environment dominated 
by three- to four person offices. They frequently interrupt each other 
with quick questions such as “do you remember the code for the new 
cancer treatment?” Additionally, pairs of domain experts meet daily 
to weekly for scheduled one to two hour analysis meetings in front of 
a computer to work on a shared task. The domain experts also hold 
weekly group analysis meetings with their manager to discuss ongoing 
work. Current analysis meeting practice is, show data, ask questions, 
note questions, and go back to desk to analyze data after the meeting. 
When presenting analysis problems during such meetings, their 
manager might ask: “but did you look into whether they all contain 
implants?” which would require the domain experts to return to their 
desk after the meeting to answer the question. 

The process of setting treatment rates involves communications 
with external political stakeholders such as clinical societies, policy 
makers, and regional healthcare professionals. Collaborating with 
these diverse groups requires communication of complex data to 
people who have limited experience with data analysis. 

In addition to the yearly task of computing rates, the analysts solve 
smaller and shorter tasks to support internal and ministerial political 
functions, as well as researchers, journalists, and law enforcement, 
who share interest in obtaining knowledge from the data. 

2.1.3 Design work 
From these inquiries with the domain experts, we became interested 
in supporting parts of their work with quicker, collaborative, ad hoc 
data exploration tools. As part of designing F3, we conducted design 
workshops, and evaluated lo-fi prototypes and mock-ups with the 
domain experts. During our collaborations, the domain experts have 
worked creatively with us to come up with novel interactive 
visualization designs. We aimed to support tasks such as exploring 
why the number of patients admitted for specific treatments dropped 
from one year to the next and what the cost distributions of specific 
treatments across are hospitals. 

Before using F3, the domain experts were accustomed to 
discussing data in meetings, and to looking at data in isolation. With 
F3, the goal was to let the domain experts discuss data while 
interacting, by enabling them to quickly and collaboratively construct 
hypotheses, and execute strategies, to support ad hoc discussions and 
immediate answers to questions about data during meetings. 

2.2 Design Goals 

The goals of F3’s interaction techniques were to ease collaborative 
data exploration of large data sets by enabling fast, fluid, and flexible 
creation and combination of visualizations (see Figure 1).  

F3’s interaction techniques provide a novel approach to querying 
multi-dimensional data, and support drilling down, filtering, and 
grouping data. In designing the interaction techniques, the aim was to 
support data exploration by enabling fast, fluid, and flexible 
interactions on data: 
Fast: User interface actions have a short interaction time span. In 

designing F3, we have aimed to provide immediate reactions to 
interface actions rather than intermediary menus. The argument is 
that it allows users to quickly gain overview of datasets and obtain 
valuable insights. In addition, data has been pre-computed, such 
that even complex queries return fast results. 

Fluid: The user interface provides continuous feedback and invite for 
unbroken series of interaction. In designing F3, we have aimed to 
provide feedback on possible choices and the state of the system, 
and ensure that results of actions open the possibility for new 
system actions. This for example means that F3 gives feedback on 
possible release locations similar to tableau [45] when users drag 
user interface elements and that it is possible to interact with many 
parts of visualizations.  

Fig. 2. The domain experts’ collaborations and computation process. 
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Flexible: The order and approach to data exploration is flexible. In 
designing F3, we have aimed to create interaction techniques that 
allow for variation in data exploration. For example, there are 
many possibilities and ways of combining user interface elements 
to produce different outcomes, and that the same analysis goal can 
be achieved in several ways. 

We aimed to provide interaction techniques that support data 
discovery, exploration, and comparison (why’s in [5]). We did this 
primarily by enabling the low-level selection, navigation, 
arrangement, filtration, and aggregation visualization tasks (a subset 
of manipulation how’s in [5]). In designing F3, we wanted 
visualization components and data fields to be able to be touched and 
dragged onto as many elements in the user interface as possible. 

We designed the interaction techniques with inspiration from 
design guidelines for post-WIMP user interfaces [12, 33] (e.g., 
consider feedback, reduce indirection, and integrate UI components in 
visual representations). We also aimed to enable users to use both 
hands in a single task (e.g., to select an item as context for another, see 
[18]), or in simultaneous tasks (e.g., do two similar actions at once). 

The interaction techniques in F3 can be adapted to many 
visualization techniques. For F3, we chose to focus on bar charts. The 
domain experts that we have designed F3 for, are familiar with bar 
charts, and use these often. Additionally, bar charts display aggregate 
information, and therefore apply well to the visualized domain data. 

2.3 Data Model 

We have designed F3 primarily to help the domain experts understand 
the rate foundation table and its potential data errors. The rate 
foundation table is multi-dimensional and contains highly hierarchical 
data. Constructing an OLAP cube  [17] based on the rate foundation 
table, facilitates slicing, drilling down, and pivoting according to any 
of the tables’ columns to enable detailed data exploration and analysis. 

We based F3’s visualization and interaction techniques on the data 
cube model. This helped facilitate meaningful results from 
combinations of user interface elements. The core parts of the model 
consist of dimensions, levels, members, and measures. 

Nominal data columns in a data table often map to dimensions. For 
example, year, month, and day columns often map to a date 
dimension. These are levels of the date dimension hierarchy, and 
instances of these levels are members. For example, a date dimension 
may contain year as a level, which contains 2013 as a member. F3 
encodes dimensions with data bars’ horizontal position in bar charts. 

Quantitative data columns in a data table often map to a measure. 
For example, cost often map to a measure. Measures contain 
aggregates of raw data columns, grouped by dimensions. F3 encodes 
measures with data bars’ height in bar chart. 

To be able to construct histograms, it is useful to bin some 
measures, for example to construct a histogram of costs. Therefore, 
the data model can contain data fields, which are possible to use as 
both measures and dimensions. We refer to these as binned measures. 

3 INTERACTION TECHNIQUES IN F3 

The interaction techniques in F3 support creating visualization views 
by combining, extending, or re-using existing visualizations. In doing 
so, the techniques provide a novel approach to querying multi-
dimensional data and receiving visualization views as query results. 

Table 1 present an overview of the techniques; Figures 3 to 9 show 
them as sketches to improve readability. The first techniques are 
simple but necessary for exploring data; the latter techniques are more 
complex and aim to help solve specific tasks. Next, we describe the 
basics of each technique, discuss design alternatives, and open issues. 

3.1 F3 Interaction Concept 

 In F3, access to data happens through a data field menu in the top part 
of the display (see Figure 1). The menu shows dimensions and 
measures from the data cube model [17]. Users drag data fields from 
the menu and drop them on relevant parts of the user interface. 

We opted to use a statically positioned data field menu as initial 
entry point. As an alternative, we considered showing a menu when 
touching relevant parts of the user interface, but imagined that the 
chosen solution requires fewer instructions to get started, and thus 
work better for walk-up use. 

Views are the main user interface element of F3. A view shows 
data in bar charts. The x-axis encodes dimensions and the y-axis 
encodes measures. Users move views by dragging with one finger.  

To create a view, users drag a data field from the data field menu 
and release it on the canvas (the background area), which results in a 
bar chart that shows the dropped data field (see Figure 1). We designed 
view creation with focus on speed and of ease of use, since creating a 
view is a necessary first step in most tasks, and thus frequently used. 
Because the dragged data field may both represent a dimension and a 
measure, the two possibilities provide slightly different results. A 
dragged dimension or binned measure results in a view that encodes 
the dragged field on the x-axis, whereas a dragged measure results in 
a view that encodes the dragged field on the y-axis. The axis not 
mapped by the released data field shows a default data field provided 
by the data model, which for the y-axis could be number of 
observations in the database. After creating the view, users may 
reconfigure views axes, which the technique described next facilitates. 

3.2 View Configuration 

To configure a view’s axis, users drag data fields from the data field 
menu and release them on a view’s axis label. This allows users to 
perform the most essential configurations of a view. It is possible to 
drop dimensions on x-axes, and measures on y-axes (see Figure 3). 
Dragging a data field over an axis highlights the release area, if the 
dragged field is compatible with the axis. Dropping the data field 
configures the axis. This provides users the opportunity to alter views 
as needed, and to select alternatives to the default selection. 

 
 
 
 
 
 

 
 
 

 

3.3 View Cloning 

To create a clone, users drag a view with two fingers (see Figure 4). 
This allows users to continue their exploration in a clone, for example 

 
Fig. 3. Drag data fields onto view axes to reconfigure views. 

Interaction Technique Action Result Complexity 
View Creation Drop a data field on the canvas A new view Simple 
View Configuration Drop a data field on a view’s axis The view’s axis is re-configured Simple 
View Cloning Drag a view with two fingers A clone of the view Simple 
View Synchronization Drag views so that they overlap, then tap button Y-axes in the two views use the same scale  Simple 
View Exploration Drop a data bar on the canvas A view drilled down on the data bar Complex 
View Filtration Drop a data bar on a view’s filter area The view is filtered based on the data bar Complex 
View Exploding Drop a data field on a view’s explode area Views for each of the data field’s members Complex 
Trail Cloning Hold data bar, while clone dragging a child 

view 
A clone of the trail between data bar and view  Complex 

View Matrix creation Drag views so that their corners overlap A matrix of views combining the views’ axes Complex
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by changing axis encoding, while the original view is preserved. We 
designed cloning to work similar to drag, and leverage the added 
efficiency provided by chunking [7] drag and clone interactions. To 
rearrange a view and create a clone, users start by dragging a view. 
Adding a second finger after positioning the original view, results in 
a clone operation. The user is then free to use one or two fingers to 
continue positioning the clone view. 

F3 reserves two-finger and two-hand interactions for more 
advanced and infrequent interactions. We designed view cloning for 
single hand two-finger operation. 

 
 
 

 
 
 
 
 
 

 

3.4 View Synchronization 

To synchronize views’ y-axis scales, users drag a view such that its 
side area overlap another views’ side area (see Figure 5). This helps 
users to compare views. When views that encode the same measure 
overlap, a synchronize button appears above the y-axes in both views. 
While holding onto the view, tapping the synchronize buttons with a 
finger from the other hand, cause the view in which the button was 
tapped to adopt the scale of the other view. 

We designed the technique with the aim to reduce unintentional 
synchronizations while for example arranging views and to keep the 
design of the technique similar to the other techniques. We also 
considered if the technique should facilitate measure changes, but 
chose not to, to reduce chances of errors. 

 
 
 
 
 

 
 
 
 
 

 

3.5 View Exploration 

To create a child view based on data represented by the parent data 
bar, users drag data bars out of a view and release them on the canvas 
(see Figure 1). This allows users to drill down and perform more 
detailed data exploration in a new view. The metadata necessary to 
provide a useful result is obtained from the data model that provides 
child members (e.g., 2014, September, or 22nd) at a level below the 
data bar (e.g., year, month, or day). F3 show these child members on 
the x-axis in the child view. In case no child members exist for the 
dragged member, the child view shows the dragged member. 

To add additional data bars’ child members to the child view, users 
drag these bars from the parent view and release them on the child’s 
filter area, which is located above the data area. This allows users to 
select multiple items from a view to analyze in more detail. To show 
how the child view was created, a line represents the parent-child 
relation from the parent data bar to the child views’ filter area.  

Creating a series of views, in which each child is the parent of 
another child, shows a history of exploration steps, which has been 
referred to as a trail of thoughts [10, 29]. F3’s parent-child 
representation does not rely on color encoding, thus freeing color 
encoding for other purposes. At the other end of the design spectrum, 
color highlighting could completely replace the use of line 

connections, which might be sufficient as long as there are relatively 
few views. Since the aim of F3 is to support numerous views, it is 
necessary to use line connections to represent parent-child relations. 

3.6 View Filtration 

To filter data shown in a view, users drag data bars out of a view and 
release them on another, yet unrelated, views’ filter area (see Figure 
6). The technique is similar to view exploration, and allows using 
views as filter palettes, supporting flexible exploration in other views. 
When users drag data bars to the filter area, it is highlighted. Multiple 
filters on a dimension are represented as a single circle and are 
logically OR’ed. Filters on different dimensions are represented as 
different circles and are logically AND’ed. Because the design does 
not include range-queries, it is useless for two filters on the same 
dimension to be OR’ed. Flicking up or down on a filter circle inverts 
the filter. Similarly, flicking left and right on the filter circle enables 
or disables the filter (this also works for view exploration). 

3.7 View Exploding 

To explode a view according to members of a data field, users drag 
data fields from the data field menu, and release them on a view’s 
right-hand side (see Figure 7). This facilitates breaking down the 
original view by the dragged data field and comparing its different 
members to each other, similar to small multiples. The explode area is 
highlighted when dragging data fields on top of it. Releasing the data 
field generates views for each member of the dimension. The abundant 
display space allows view multiples of similar size and scale to the 
original view, which facilitates comparison. 

The result of the technique is that the original view’s border area 
increases, such that it contains the original view, as well as the 
member views to the right of the original view. F3 shows members in 
a scrollable list if there are more than four members. F3 aggregates the 
members that scrolling hides, in a view to the right of the list.  

Data bars from other views may be dropped on the explode area, 
just like data fields, to explode the view by child members of the 
aggregate represented by the bar. For example, dropping the data bar 
2013 on the explode area, generates views filtered on quarters of 2013. 

 
 
 
 
 
 
 
 
 
 

 

3.8 Trail Cloning 

To clone an entire exploration trail, users hold onto a data bar in a 
parent view, while dragging a view using two fingers similar to 
cloning a view (see Figure 8). This facilitates comparisons between 
subsets of data, which may be useful, for example, when a user look 
at one part of data, and would like to see if other parts show similar 
patterns. When holding onto a views’ data bar, F3 highlights trails of 
the view that users can clone. This sets the context for the following 
interactions. Using the other hand, two-finger dragging a highlighted 
view creates a clone trail. This results in a new exploration trail 

 
Fig. 4. Drag views with two fingers to clone views. 

Fig. 5. Drag views onto each other so that they overlap. A 
synchronize button to appears. Tapping it synchronizes the axes’ 

 
Fig. 7. Drop data fields on views to create copies of the view, filtered 
for values of the dropped field. 

 
Fig. 6. Drag data bars onto a views’ filter area, to filter by the dragged 
data bar. 
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showing views similar to those in the original trail, and facilitates fast 
and fluid comparison between the two sets of data, in that the new trail 
can be created quickly, and that it is possible to perform the interaction 
as part of a longer series of interactions. F3 positions the cloned trail 
where users released the dragged view, and lays out intermediate 
views similar to the original views, which the right side of Figure 8 
shows. F3 allows creating trail clones when all members between the 
data bar held on to and a child view exist in the potential cloned trail. 

The abundant display space provides the opportunity of showing 
many views. Trail cloning provides a fast way of creating them. In 
particular, the technique facilitates comparison between multiple 
comparable slices of data, which is a common data analysis task [4].  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

3.9 View Matrix Creation 

To create a view matrix of the combination of two views, users drag 
one views’ corner on top of another views’ corner (see Figure 9). This 
allows users to relate and compare data in the original views. When a 
user drags the top-left corner of one view on top of the bottom-right 
corner of another view, F3 shows view matrix creation is possible by 
highlighting the views’ corners. When the user releases the view, F3 
creates a matrix combining the two views’ dimensions and measures. 
The source views keep their approximate position within the matrix. 

The number of rows and columns in the matrix depend on the 
dimensions and measures in the two source views. Dimensions that 
have no corresponding measure (e.g., fruit or hospitals), only fit on x-
axes, and thus only on matrix columns. Likewise, unbinned measures 
only fit on y-axes, and thus only on matrix rows. F3 creates a 2x2 
matrix if users combine views that encode such data fields. In the other 
extreme, F3 creates a 4x4 matrix if users combine views in which both 
axes in both views encode binned measures. 

If the two views encode the same dimension and level on the x-
axis or the same measure on the y-axis, then the views are 
incompatible and view matrix creation is not possible. If the two views 

are incompatible, F3 does not highlight the views’ corners when users 
drag the views onto each other. 

4 IMPLEMENTATION AND APPARATUS 

We implemented F3 in Java using a combination MT4J [32] and the 
Prefuse data visualization toolkit [20]. Specifically, the Prefuse 
renderers where ported to MT4J where they generate and update 
MT4J components. The data and data model were stored in an 
MSSQL server and MSSQL Analysis Services cube respectively. F3 
query the data using Olap4J (www.olap4j.org). 

F3 can be used on different display sizes and touch systems. 
However, we conducted both studies in the following on a Smart 
8084i display shown in Figure 1. This display has a spatial resolution 
of 3840x2160 (also known as 4k), a 30Hz refresh rate, measures 84 
inches diagonally and supports 4 simultaneous touch points. An 84” 
display is sufficiently large to provide the experience of abundant 
display space, while still physically possible to move into busy offices 
and employees’ work area, which was necessary for the two studies 
described next. 

5 STUDY #1: FORMATIVE LABORATORY STUDY 

The first study investigated usability issues and reactions from 
participants whom we asked to solve a range of data analysis tasks. 

5.1 Participants, Data and Tasks 

We recruited nine participants (age: 27-57, mean 34). Participants 
were current or former Master-level students. They all conducted data 
analysis on a regular basis. 

We used the rate foundation table that comprised nation-wide 
admissions, treatments, and expenses data for the years 2012 and 2013 
as basis for the data cube that spanned 7 dimensions and 6 measures. 

The tasks were developed from taxonomies of data analysis [5] and 
inquiries with domain experts (see section 2.1). The first four tasks 
were brief and asked participants to answer factual information (e.g., 
“how many patients were admitted to hospital X”, “How many 11 year 
olds were admitted across the dataset”). The next two tasks were 
longer and required several interaction steps (e.g., “How many 
patients aged 65 or more has received plastic surgery at hospital X”). 
The last two defined tasks were complex tasks that required for 
example data comparisons (e.g., “Which treatments are cheaper on 
large hospitals than on small hospitals in the capital region”). We 
deliberately asked participants to work on clearly defined tasks, even 
though the goal of F3 was to support data exploration. We chose this 
approach because the goal of the study was to ensure that the system 
was useful before deploying it in a field study. 

5.2 Procedure 

During the session, besides the participant, we were two persons 
present in the room, engaged in a facilitator and an observer role. The 
facilitator’s role was to keep the session on track and the participant 
at ease. The observer’s role was to observe and take notes. Both were 
allowed to ask questions. 

First, we asked participants to use the system, and to explore the 
interaction techniques. To assure participants understood and used the 
entire range of interaction techniques, we observed them closely in 
this phase and gave suggestions about what to try if they were in doubt. 
We encouraged participants to ask questions throughout the session. 

After we introduced participants to F3, we asked them to work with 
the tasks described above, one by one. We administered the tasks in 
writing. If time permitted, the facilitator and observer asked questions, 
before moving onto the next task. Finally, if time permitted, we asked 
participants, to define a task on their own, and to solve it using F3. 

At the end of the session, we interviewed participants about their 
experience with the system and interactions, including its benefits and 
drawbacks compared to other systems they knew, and followed up on 
aspects of their interactions or what they said during the session. 

The sessions lasted between 55 and 65 minutes. 

 
Fig. 8. Trail cloning technique: An exploration trail can be cloned by 
holding onto a data bar in a parent view, while two-finger dragging a 
child view. 

 
Fig. 9. Drag view corners over each other to create a view matrix. 
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5.3 Data Collection and Analysis 

Participants were video recorded, and the facilitator and observer kept 
notes of usability issues and participants’ utterances. We also used the 
notes as basis for the interview described above. 

We analyzed the collected data in four analysis sessions based on 
the Instant Data Analysis technique [28]. The analysis sessions, which 
we conducted within a day after participant sessions, lasted on average 
one hour. For the analysis, we gathered in front of a whiteboard. We 
transferred observations to sticky notes, fixed them to a whiteboard, 
and presented and discussed our observations. We then categorized 
the sticky notes into themes and clustered them on the whiteboard. 
Based on the clusters, we captured the most important findings with 
references to the observations and any supporting video recordings.  

5.4 Results 

First, we describe which techniques participants used. Then we 
present the results in terms of five topics that we observed across 
several participants.  

5.4.1 Use of F3’s Interaction Techniques 
All nine participants understood and used view creation, 
configuration, cloning, and exploration. Many participants seemed 
uncertain about the effects of the other techniques, even after we 
guided them through using them. Only one participant actively used 
view matrix creation and no one used trail cloning. 

One participant quickly understood how view cloning would 
enable him to try out new approaches and strategies, which enabled 
him to perform a range of analyses in a rapid manner. 

5.4.2 Drilling Too Deep 
Seven out of nine participants drilled too deep. While reading off the 
value of a data bar might solve a task, participants instead dragged the 
data bar out of the view, thus creating a new view drilled down in the 
aggregate. This did not give them the answer to the task. Some 
participants merely stopped looking at or explicitly closed the child 
view, and read it from the parent view as required, while other 
participants got confused and either stopped to consider what to do, or 
alternatively, tried to manually aggregate data in the child view. 

Participants found F3 backwards when they wanted to isolate a 
member from one view in another view, aggregated by another 
dimension. F3 lets users do that by dragging out the data bar, (i.e., 
drilling), and then configuring the view with the needed dimension. 
For example, if participants needed to see a view filtered on a single 
hospital, they often created of view of hospitals, and then dragged out 
the wanted hospital. This resulted in a drill-down on hospital, thus 
creating a view of wards on the chosen hospital. To see other aspects 
of the hospital, participants had to drag another dimension onto the x-
axis, which they seemed to either not remember or understand. 

5.4.3 Combinations of User Interface Parts 
Some participants were unsure about possible combinations of user 
interface parts. They had understood that it was possible to combine 
many elements, but it was unclear to participants, which particular 
elements that it was possible to combine. Consequently, participants 
tried to combine elements in ways that we had neither considered nor 
implemented. One participant, for example, tried to drag two data bars 
together, which F3 does not support. When we asked the participant 
what she expected the result of the action to be, she suggested that it 
might show both data bars in a view. Two participants also tried to 
drag a view to another views’ explode area, which they seemed to 
expect to result in exploding the view by data bars in the dragged view. 

It seemed that some participants did not consider what they were 
dragging, but only where they dropped it. For example, a participant 
dragged a data bar over many parts of the user interface while 
thinking, reminding of Dwyer et al.’s “thinking with their hands” [11]. 

5.4.4 Default Axes 
Default axis selection seemed to create some confusion when 
participants had created views. It seemed they were not aware of the 
default choice, but only realized it when they needed to solve a task 
that required them to select another measure. 

5.4.5 Data Exploration 
Two participants suggested that F3 would be a good tool for exploring 
data. A participant that had obtained a particularly good grasp of the 
different possibilities considered two ways a data exploration could 
progress: He could create consecutive child views by drilling and 
reconfiguring, for example to see data for people above 65 that had 
plastic surgery performed at a specific hospital. This would leave a 
trail of the exploration process. Alternatively, he suggested to creating 
three views that showed age groups, treatment types, and hospitals. He 
would then drill on one of these views, and later filter the resulting 
view using the other views. The result would be identical, but the 
process of getting there, and the layout and relations between views, 
would be radically different. 

In contrast to this, a participant said that she was used to seeing 
more information in a single view. She thought it weird with so little 
information in each view, but so many views. In addition, this 
participant suggested that the system was too visual, and that she 
would rather conduct her analyses by programming and looking at 
data tables (which repeats findings in [27]). 

5.4.6 Experience 
Many participants found F3 useful and efficient, in spite of their 
confusion. Two participants said that F3 provided playful interactions. 
In the debriefing, they explained how they would analyze their own 
data with F3. One participant described F3 as “simple charts, fast”. 
Another participant emphasized the speed at which she was able to 
conduct analyses with F3. On her way out the door, one participant 
said “bye, bye. It was fun to play…”, which stressed the experience 
that she had had with the system. In contrast, a participant that had 
many problems using F3 said he “lacked the appetite” for using it. 

6 STUDY #2: FIELD STUDY 

Where the first study sought to evaluate the usability of the interaction 
techniques, the second study focused on how the domain experts 
described in section 2.1 would use the interaction techniques as an 
integral part of their work. The study aimed to understand how F3 
support data analysis tasks that span hours or perhaps days and that 
involve data exploration. We based the study on real data and tasks 
that potentially involved many analysts. The duration of this study 
allowed us to understand the benefits of one technique over another, 
and to understand how analysts can use techniques creatively to 
explore data, uncover new understanding, and gain insight. 

6.1 Deployment 

We deployed the 84” display and F3 in the offices where the analysts 
worked during two regular workweeks. Initially, we installed the 
display in an office shared by two employees and an external 
consultant (first location). After four workdays, we moved the display 
to a small room that was regularly used for impromptu stand-up 
meetings and that more people passed by during the workday (second 
location). Aside from the display, there were two tall café tables in the 
room. In this location, a more varied group of people used F3. Moving 
the display created new interest, even from those had been sitting near 
the first location. The display remained in this location for the 
remaining six workdays. During the entire period, we expect that 
about 20 people have interacted with the system, and that a group of 6 
domain experts have used the system for more than half of the time. 
In total, 907 views were created comprising all F3’s techniques. 
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6.2 Data Collection 

To obtain a satisfying understanding of how the analysts used the 
display during the deployment, we based data collection on 
triangulation: We logged user interactions, captured screenshots at 5-
second intervals, and recorded audio during system use. In addition, 
we visited the deployment site at least once every day for one to six 
hours to make sure the system was being used, to observe the use, to 
conduct interviews, and to resolve technical problems. We kept field 
notes while on-site. Immediately after leaving the site, we logged short 
audio memos describing our observations from the visit. Inquiries 
with the team of domain experts over the past three years provided 
further context to understand the techniques’ use in the broader 
context of their work. In addition, we used the visits to gather requests 
for features or updates to the data model. These requests were actively 
encouraged, to create pull from the analysts. Finally, we conducted 
interviews with three key analysts at the end of the deployment period. 

6.3 Making Sense of the Collected Data 

Analysis was informed by Grounded Theory [40], advocated for 
InfoVis in e.g., [8, 24]. We continuously moved from the field to the 
data and back again, reformulating our coding and questions, thereby 
gaining understanding of the way the analysts used F3. The collection 
and analysis of data also served to address deployment issues. 

At the end of the deployment, we gathered all data to obtain an 
overview: We transcribed observation audio memos, and along with 
notes from interviews and observations transferred these to sticky 
notes to facilitate affinity diagramming. We only use interaction logs 
to describe the extent of F3’s use during the deployment, because the 
logs contained noise caused by our presence on-site in terms of 
suggestions to the domain experts for what to try and our own 
interactions with the system. We used the sticky notes as entry points 
for further analyses of screenshots and audio recordings to provide 
additional detail when necessary. Some notes specifically suggested 
returning to the audio material to obtain greater insight, which resulted 
in adding new sticky notes to the affinity diagram. The final part of 
analysis condensed seven themes, which we describe next. 

6.4 Field Study Results 

We present the results in terms of seven themes.  

6.4.1 Use of Display Space 
The entire display was used to lay out views, although the left-center 
was used first and most. Views were never positioned such that they 
extended towards the top border. A few views extended the left or 
right border, such that most of the view remained visible. On one 
occasion, the domain experts positioned views extending below the 
display, to store unused views. 

6.4.2 Interaction Techniques and Data Model 
During the two weeks of deployment, the domain experts requested 
many additional features from F3. We logged feature requests, but 
chose not to provide any of them, which would potentially alter the 
system dramatically. The most common requests were to provide view 
scaling to show more data bars in a view and provide additional 
visualization techniques (e.g., scatterplots). The domain experts also 
frequently asked for general process and provenance [21] support in 
F3 (e.g., annotate, record, share, desktop integration). More rare 
requests centered on the visualization and interaction techniques 
provided by F3. The domain experts wanted visualizations to: show 
several measures in bar charts next to each other; to allow analytical 
abstractions (e.g., show the difference of two views); and to show 
stacked bar charts. The domain experts asked for interaction that 
focused on views. For example, to be able to undo actions, drill-up 
and down, and filter, all within a single view. Aside from within-view 
interactions, the domain experts wanted to be able to create a new view 
with a single data member (i.e., a filter) by dropping a dragged data 
bar on the canvas similar to view exploration, but without drilling, to 
be able to select a few aggregates to continue exploring. This shows 

that what normally was an effective technique, seemed to limit 
participants in some circumstances. A domain expert described the 
difficulty in removing a single member from a view. We designed F3 
to show all filters explicitly through view relations. We therefore 
chose not to provide a simple technique for this. Instead, F3 can use 
view exploration, followed by inverting the relation. Although this 
solution is more complicated that what the domain experts asked for, 
it helps to understand the filters applied to data. 

The domain experts requested many updates to the data model. For 
example, we added 14 new dimensions, ending in 21 dimensions. 
These requests illustrates the domain experts’ motivation for using the 
system – they were eager to use F3, and use it for more than they could 
without updates to the data model. 

6.4.3 Exploration of Data 
Quick insights: After an analyst had discovered what seemed to be 
an important data error in a matter of seconds with F3, he estimated 
that it would take 30 minutes to conduct a similar exploration with 
their current practice. When asked to compare the current analysis 
practice to using F3, he said “[F3] is more playful, the leap from 
thought to action and result is shorter”, and that “there are fewer steps 
involved”. When F3 crashed (which it did on occasion), he said that 
he “was forced to remember what he had done” which showed that, 
although the fast and fluid properties had helped him to perform 
analyses quickly, remembering what he had done was difficult. F3 
would have helped him in this regard by showing views’ relations, but 
when it crashed, it was clearly demonstrated the support given by 
showing those relations. This shows that he used F3, without thinking 
consciously about how he approached the exploration. He also stated 
that, “our current practice also leaves more flexibility [in terms of 
how we can perform analyses]”. Another analyst described working 
with F3 as “impromptu analyses in data”. She described F3 as quick 
to provide results, as visual (as opposed to looking at tables in SAS), 
and as flexible, in that dimensions and measures can be the combined 
simply by drag and drop. 

Problematically playful: The playful quality was problematic in 
some circumstances. In some analyses, it was clear that analysts were 
too fast, without keeping their goal in mind, and drilled too deep (as 
in study #1) into a slice of the data set. It seems that keeping a mental 
overview, while playing and exploring the data was problematic for 
the analysts. One analyst thought that it was “a bit harder to keep the 
overview, because it is so easy to drag something new in, whereas if 
we are programming it, we typically plan what we want to do 
beforehand. Here, you typically drag something to see: how does that 
look? Is it something to proceed with, and otherwise you close and 
continue”. 

Difference to current practice: The analysts described the 
difference between their current practice and using F3 in terms of how 
they find errors in data: “You don’t sit and play with the data. Most 
often, you’re looking for something specific.” This showed that the 
fast and fluid properties of F3 provided the analysts with new 
possibilities for exploring data, and find anomalies or errors, that they 
were unable to find easily otherwise. Another analyst further 
commented that seeing the context of a task with more data was useful, 
and increased her awareness of the task. The analysts liked how F3 
helped constructing new hypotheses in their analysis by supporting 
exploration of data. One analyst said: “[F3] is good for getting ideas. 
Ideas that should be looked into”. Here, ideas covered data errors and 
other things that should be corrected. 

6.4.4 Visualizations of Data and Relations 
The analysts liked that F3 showed data visually, but also commented 
that they were not used to see data that way (the analysts primarily use 
data table representations when looking at data). An analyst said that 
she had to “get used to seeing data visually” – which she described 
was hard for her. At least five analysts repeated this sentiment in 
various forms. They did see the value in the visualizations, but some 
also used the textual representations of aggregate values that F3 
showed when tapping a data bar. This seemed to reduce misreading 
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visualizations, for example by facilitating a sanity check for scaling 
similarity in compared views. 

The analysts liked the way that F3 visualizes the relations between 
views. One analyst for example said: “I can obtain an overview of how 
the views are created”. We suspect that these representations helped 
participants understand F3’s feedback during interaction, but have no 
empirical evidence for this.  

6.4.5 Views as Toolboxes 
In F3, we noticed that some participants used views as tools. We 

call these toolbox views. They are views that users create, only to be 
able to drag data from the views to filter other views, which have the 
users’ focus. Toolbox views bring little value except for helping other 
exploration steps. The ability to use toolbox views in F3 is unique, in 
that auxiliary views make use of the abundant display space. With less 
display space, using toolbox views would seem like wasting pixels. 

A domain expert that was quick to grasp the idea of using views as 
tools said: “You just have to turn it up-side down in your mind”. Most 
of the other domain experts seemed to find it difficult to use views as 
a tool in exploration, and seemed to forget the approach. However, as 
one analysts said: “If you are looking into a specific problem, seeing 
the context is important”. In this statement, the context was a view, 
and the object of interest a data bar dragged from the view.  

6.4.6 Collaboration 
The domain experts considered using F3 in collaborations with peers 
on-site. They experienced such collaborations during the deployment 
and thus considered how F3 could become a permanent part of their 
work. For example, an analyst said that using the display during 
analysis meetings would facilitate answering of open questions 
straight away during meetings, supported by F3’s simple and fast 
interactions. In contrast, current analysis meeting practice is to show 
data, ask questions, note questions, and finally analyze data after the 
meeting, as outlined in section 2.1. This suggests F3’s value in internal 
collaboration. The analysts also described how F3 invited for 
discussions about data. One analyst said that collaboration between 
several analysts helped generate analyses and ideas, and that it was 
easier, more fun, and less error prone than doing it alone. 

The analysts also frequently considered using F3 for 
communications with external collaborators such as clinical societies, 
policy makers, and regional healthcare professionals. For example, 
when two analysts showed F3 to a group of collaborators from a 
university hospital, they collaboratively discovered a data error. An 
analyst suggested that F3 could improve the process of collaborating 
with clinical societies. She imagined that instead of endless series of 
meetings and email exchanges that take the form of negotiations, using 
F3 could facilitate collaboration, increase mutual understanding of 
complex issues, and help to arrive at conclusions faster. 

6.4.7 The Domain Experts Obtained New Insights 
During the study, the domain experts found three potential data errors, 
which they added to a list of concerns. According to the domain 
experts, this was much more than expected. For example, they 
discovered that the average amount of bed days for a region was four 
times higher than other regions. They hypothesized that the region had 
conducted incorrect registrations, conducted registrations according to 
an old standard, or that an internal process had failed to remove parts 
of data that were irrelevant for later analysis. We inquired if and how 
finding the potential data problems was due to F3. The reasons most 
often attributed to finding errors, was the speed of data exploration 
with F3, and that they could collaborate efficiently in the process. 

7 DISCUSSION AND CONCLUSION 

We have presented F3, a system implementing a selection of 
interaction techniques that (a) use touch to create and combine 
visualizations and (b) work well with abundant display space. Next, 
we discuss the interaction techniques in F3, the two complementary 
empirical studies of F3, and limitations/future work.  

7.1 Benefits of Interaction Techniques in F3 

In designing F3, we wanted to enable users to touch, drag and drop as 
many visualization elements and data fields in the user interface as 
possible. Participants liked being able to drag things out of views and 
generate new views. Our studies suggest that this could be due to the 
direct mapping between what they saw, what they did, the reaction 
they obtained, and how F3 represented this visually with links. We 
believe this a key strength of the interaction techniques used F3. 
However, we also observed some participants’ uncertainty about 
component mappings in study #1, which later inquiry confirmed. 
There are two takeaways from this: First, participants formed 
conceptual models of where data fields and aggregates could be 
dropped, and assumed that other parts of the interface worked 
similarly. A guessability study may provide the necessary information 
about the additional possibilities for a redesign.  Second, the feedback 
provided by F3 should be improved to give more clear information of 
where data fields and aggregates could be dropped. 

We believe F3 allows users to create many views easily, thereby 
making use of the abundant display space. While this follows 
suggestions from earlier work (e.g., [29]), we argue that several of the 
interaction techniques in F3 are novel in this regard. The empirical 
work suggests that some of the interaction techniques (e.g., view 
cloning, exploration, filtering, and exploding) were easy to understand 
and useful. These techniques helped participants think and execute 
complex data explorations quickly, some of which took hours of trial-
and-error in their current system. While some of these would have 
benefitted from any kind of visualization, we think that the aggressive 
creation and expansion of visualizations in F3 is the key benefit. 

7.2 Empirical Studies of F3 

The results of the studies suggest that users were able to use the 
techniques to perform data exploration and found them useful. We can 
think of only few studies showing such findings in a field study. 

The laboratory study identified design concerns such as too much 
drilling, which largely were unimportant in the second study. One 
reason for this was that the analysts in the second study had much 
longer time to learn to use F3, and to apply the techniques to perform 
data exploration as part of solving their overall analysis tasks. 

We want to discuss briefly our choice of methods. Empirical work 
is scarce in the related work. At least a part of this reason is that large, 
high-resolution touch displays has only recently become available. 
Another reason for the lack of empirical work is that it is difficult to 
establish good collaborations with experts that may use visualization 
systems. In addition, information visualization research has only in the 
last decade begun to use empirical studies as a crucial evaluation 
method [25, 31].  

We acknowledge that it is difficult to separate the effects of the 
specific system (F3) from the general technology (large display 
visualizations) in field studies such as the reported. However, we 
believe that the field study showed that F3 enables collaborative data 
exploration in a manner and efficiency that other systems do not 
support. For example shown by the fact that external collaborators 
were able to take part in exploring data with F3. 

7.3 Limitations and Future Work  

F3 is limited by supporting only bar charts; we prioritized instead to 
make it work with large-scale data that could be used in a field setting. 
Support for alternative views was a common request from participants 
in both studies. Many of the interaction techniques can easily be 
applied to other visualization techniques, for which there are plentiful 
[19]. Some of the interaction techniques may well be more useful with 
other visual representations. View matrix creation, for example, 
creates matrices, and scatterplot matrices have been shown to be 
extremely valuable for some tasks. Selections in scatterplots may also 
be designed such that they facilitate dragging them out of a view, to 
isolate in another (e.g., like selections in [36]). 
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Representing View Relations: A Qualitative 

Study on Between-View Meta-Visualizations 

Søren Knudsen and Sheelagh Carpendale 

Abstract— To improve our understanding of the use of meta-visualizations to help explain view relations, we conducted a qualitative 
study in which we invited people with experience in both visualization and interaction design to work with, discuss and sketch 
representations of view relations. Because data analysis based on visualizations frequently involves creating and navigating many 
visualization views, it is becoming important to develop ways to keep track of how one visualization view relates to another. The 
pressure to find effective solutions for representing the relations between views is being fueled by the increasing prevalence of 
large, high-resolution displays, which provide more space for multiple views and view organization. However, the simple increase 
in display size does not inherently provide the additional analysis support that may be needed. Between-view meta-visualizations 
may help to address this need by offering methods that can reveal relations between views. Through our exploration of the 
possibilities for showing between-view relations, we discovered several factors such as the data itself, the parts of the data that are 
shown, the flow of data, the encoding of the data, the view coordination, and the interactions that can be used as part of meta-
visualization representations. Our results, together with existing research, form the basis of a six dimensional framework that expands 
the range of possibilities of between-view meta-visualizations.  

Index Terms—Large displays, visualization, multiple visualization views, multiple coordinated views, interaction techniques, 
qualitative study, view relation, meta-visualization

 

INTRODUCTION 

As visualization research expands, and the demand from analysts for 
effective visualizations increases, visualizations that offer multiple 
views have become more and more common.  Now that large displays 
that can facilitate simultaneous display of several views are more read-
ily available, there is even more pressure to support view coordination. 
This has been a common theme in visualization research. Workshops 
have been held on multiple coordinated views (MCV) [22].  Many 
discussions have arisen about how view coordination might be sup-
ported. These include discussions on how to link common data be-
tween views [6, 7, 22], about how to compare data that is in different 
views [11], about how to preserve one’s mental map from one view to 
the next [8], etc. However, to date, multiple view research has focused 
on either introducing specific new methods for revealing relations be-
tween views [7, 8, 12, 26, 30], or on creating systems that support a 
given dataset and its associated tasks [26]. 

This previous work provides specific between-views methods or 
techniques to address a specified problem. However, they have not 
been generalized – designing a good meta-visualization technique is 
challenging and complex because such a task includes finding solu-
tions for many issues. These include: what tasks should be supported 
and how between view interference could be handled, etc. Moreover 
despite the growing need for such techniques no guidelines provide a 
clear summary of what these important dimensions are. There are 
many open questions about how to support a visualization researcher 
or designer during the early stages of creating their meta-visualiza-
tions. This problem motivated us to take a different approach. We look 
at the problem of relations between views from a broader perspective. 
We investigate the possible range of relations between views, the dif-
ferent types of view-relations; and how they can best be represented. 
To have a better understanding of this design space we conducted a 
qualitative study where we asked ten visualization experts to review 
existing meta-visualization solutions and to generate new ones. They 

produced more than 70 reviews containing multiple design critiques, 
and more than 70 sketches containing multiple design alternatives. We 
carefully analyzed the combined verbal, gestural, and sketched pro-
cesses during their review and sketching activity. From this analysis, 
we report a:  
1) better understanding of the range and variation in view rela-

tions, and 
2) range of possible representations of view relations.  
Based on a combination of this analysis and the related work we derive 
a framework that describes the different dimensions of between-view 
relations. This framework is a tool that can be used as factors to con-
sider when designing a view relation meta-visualization. It provides 
the different questions and criteria one should take into account during 
the early design stages of such systems. This framework can also be 
used to describe the existing view relation techniques. Moreover, the 
framework reveals an underexplored view relation design space. 

1 CLARIFYING TERMINOLOGY 

Visualization systems create displays of visualizations that are often 
divided into different spatial regions. When these regions are used to 
visualize different aspects of a data set, they are often denoted as 
views. However, the boundary between what is considered a visuali-
zation, or multiple views in a visualization, or separate windows is not 
clear. In addition, the terms view and visualization are often used in-
terchangeably. 

In the visualization literature, perhaps the most common use of the 
term view is to indicate, within a visualization system of a given da-
taset, a framed variation either in the representation used, or the part 
of the data displayed [5]. Baldonado et al. defined a view as a set of 
data plus a specification of how to display that data [2]. Importantly, 
this definition ignores how views are defined spatially. Collins & 
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Carpendale defined a visualization in VisLink [7] as being a spatial 
representation of a set of relations on a dataset that is placed on its 
own interactive plane. Their use of the term visualization notes that 
the dataset as well as the representation was different. Thus, VisLink 
is as a system that shows relations between visualizations. Viau & 
McGuffin argue that parallel coordinates plots (PCP), which are typi-
cally described as a visualization technique, could be described as 
multiple axes, where each axis can be thought of as a 1D “view” of 
the data [29]. This decision to consider parallel coordinates axes as a 
view, was suggested because each axis can be used to solve specific 
visualization goals. 

In this paper, our definition draws upon all the above, but does in 
include boundaries: A view is a bounded area that has its own use of 
spatial organization that displays any variations of datasets and their 
representations. View boundaries may be represented visually using 
borders, backgrounds, or similar techniques. 

2 RELATED WORK 

Many visualization systems show multiple views that display different 
aspects of a dataset. Multiple coordinated views (MCV) enable explo-
ration of data through a variety of interactions [2]. Brushing and link-
ing is a common coordination technique, in which items selected in 
one view, are highlighted in other views. Use of color encoding may 
be shared across the views. Likewise, navigational coordination re-
lates zoom and pan interactions in one view to other views. Most 
MCVs do not present a persistent visual representation of relations 
between views, but rely on interactions to let people discover view-
relations. Roberts provided an excellent overview of MCVs that dis-
cusses exploration processes and meta-information about views [22]. 

Multiple charts stacked on top of each other that share a common 
horizontal encoding predate computer visualization [10]. By reusing 
spatial encoding in multiple charts, they can be considered early an-
cestors to scatterplot matrices that emerged in the last half of 20th cen-
tury. Im et al. recently showed a generalization of the  scatterplot ma-
trix to display different chart types, matching the data type of visual-
ized variables [14]. 

DragMag [30] introduced an interactive version of separate mag-
nified windows, often referred to as insets in cartography with place 
holders in a base window, now commonly referred to as overview plus 
detail. ConnectedCharts [29] represented relations between data and 
axes across different views using line connections, similar to PCPs. 
Unlike PCPs, ConnectedCharts limit the represented relations to those 
established by interaction. The system reduces clutter by anchoring 
lines to axes and chart edges. 

PCPs were recently extended to offer more flexible spatial arrange-
ments. Lind et al. showed how the axes in PCPs could be spatially re-
arranged to allow investigation of relations between multiple variables 
[20]. Inspired by this idea, Claessen and Wijk created a system that 
allowed flexible re-arrangement of axes, in combination with scatter-
plots, PCPs, and histogram visualizations [6].  

VisLink [7] showed multiple 2D views arranged on planes in a vir-
tual 3D environment. Relations between the views are represented by 
line connections. By navigating the 3D environment and reconfigur-
ing the position of the 2D views, it was possible to explore relations 
between different datasets in different 2D representations such as scat-
terplots and treemaps. Multiple visualizations plus visual line connec-
tions let people quickly answer complex questions involving many 
variables. 

Zhao et al. described a hybrid of treemaps and node-link diagrams, 
combining the space-efficiency with the structural clarity of the two 
visualization types, respectively [32]. NodeTrix [13] offers a hybrid 
network visualization system that combines the benefits of node-link 
diagrams to show global structure and the benefits of adjacency ma-
trices to show local structure. Interaction techniques support reconfig-
uration of the hybrid visualizations to select between node-link and 
matrix forms. 

Lark [26] provided a meta-visualization of the visualization pipe-
line to link multiple views. Coordination of views was possible 

through interacting with views and the pipeline visualization. In Lark, 
focus was not on relations between views per se, but rather on the re-
lations between individual views and data processing stages, thereby 
providing a meta-visualization of relations between views. 

In GraphTrail [8] new views can be created from existing views by 
dragging view elements out of a view, and releasing it on a virtual 
canvas. A representation of the relation between the existing and new 
view is shown after release. In addition to representing data flow, the 
technique showed interaction history, which enabled the reconstruc-
tion of analysis trails. ExPlates [18] showed a dataflow-based system, 
that used abstract representations of processing steps between views. 
GraphTrail and ExPlates both relied on a virtual canvas and pan and 
zoom techniques, with ExPlates also supporting annotation. 

Gleicher et al. surveyed work in information visualization related 
to comparison [11]. They identified three types of methods of com-
paring objects: juxtaposition, superposition and explicit encodings. 
Although their work did not focus on view relations representations, 
some types of view relations aim to support comparisons. 

Javed and Elmqvist reviewed composite visualizations in the liter-
ature, and derived a design space expressed in terms of spatial map-
ping and the relations between data items in views [17]. Their work 
focused on data relations, but views may have other relations, which 
may be relevant to some tasks or analysis. 

Inspired by the variety of meta-view relations suggested by the lit-
erature and a study where a group of analysts discuss the need for meta 
view representations [19], we conducted a qualitative study to better 
understand the breadth and scope of this problem. Our study aims to 
expand our understanding of how between-view relations might be 
represented and to better understand the issues that arise when creating 
between-view representations. 

3 STUDY METHODOLOGY 

We conducted a qualitative study in which we invited people work 
with, discuss, and sketch representations of view relations. The aim 
was to expand the palette of possible representations of meta-visuali-
zations and to improve our understanding of these different types of 
meta-visualizations, paying particular attention to when and where 
they were of interest. Rather than designing, implementing, and test-
ing one single possible design, we chose to work towards expanding 
our understanding of the role of meta-visualizations in visualization 
and interaction design, by considering many meta-view visualization 
alternatives. To do this, we developed many alternative designs, and 
implemented them as low fidelity prototypes. The prototypes allowed 
us to present several ideas to participants and run a review of these 
designs. We were interested in the participants’ interpretation of the 
relations represented in the designs. This allowed us to gain 
knowledge of the strengths and weaknesses of the view relations and 
their representations. 

3.1 Participants 
For participants we selected people who were currently actively work-
ing with designing, implementing and evaluating visualizations and 
visual interfaces. Our participants had all published in top venues in 
visualization, interaction design, or human computer interaction. They 
were all current active researchers. There were six men and four 
women, most had a related MSc, and one had a related PhD. All were 
familiar with large displays and with using pen and touch interaction. 

3.2 Study Approach 
We asked participants who were currently deeply committed to the 
world of visualization and interaction design, to review our proposed 
designs and to suggest alternatives. In this way, the study methodol-
ogy resembles an expert review. We did not ask the participants to 
review a single system, but rather to both review and extend different 
possible design ideas for representing between-view relations. We ar-
gue that our choice of methodology offers a sweet spot between an 
expert review [28] and semi-structured interviews with people who 
might use these types of systems. In contrast to other evaluations of 
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single representations of view relations [8, 15, 26], our approach 
opened several different opportunities such as understanding what de-
signer would like to see rather than discovering if a particular ap-
proach was to their liking. Thus, the study took the form of a semi-
structured inquiry–based interview on alternative design suggestions. 
Additionally, since it has been shown that participants provide more 
feedback when presented with several alternatives [27], we also offer 
several alternatives. Our study design method allowed us to explore 
the advantages and disadvantages of different relation types and meth-
ods of representation. In doing so, we are able to obtain a broader un-
derstanding of view relations, and draw inspiration by the variability 
apparent through the many designs created by our participants. The 
study attempts to understand how meta-visualizations may help peo-
ple understand and navigate many views, and puts less emphasis on 
visualizations of the data. This study does not focus on the domain of 
the visualized data or the related data tasks, but more on abstract vis-
ualization tasks. Thus, based on Munzners’ nested model for visuali-
zation design and validation [21], we argue that using visualization 
experts as study participants is sensible. 

3.3 Apparatus 
During the study, participants worked with seven scene designs. The 
scenes consisted of visualization views and between-view relation 
representations. Some scenes captured ideas from related work, while 
others were novel. Scene 1 and 5 are inspired by  GraphTrail [8] (Fig 
1: 1, 5), scene 2 by VisLink [7] (Fig 1: 2), scene 3 by DragMag [30] 
(Fig 1: 3), and scene 4 by Lark [26] (Fig 1: 4). In addition, scene 6 was 
based on the idea of considering legends in relation representations 
(Fig 1: 6), and scene 7 on the idea of showing meta-data in separate 
views (Fig 1: 7). These scenes are not intended as faithful reproduc-
tions, but instead are used as conversation catalysts. The goal of offer-
ing many alternatives was to allow participants to compare ideas and 
to provide variability to the study [27], inspiring participants to come 
up with their own ideas. The scenes were implemented in D3 [3] and 
ran in a browser (Chrome version 31). Figure 1 shows screenshots of 
the scenes. All scenes visualize data obtained from OECD 
(http://stats.oecd.org). The scenes were shown on an 84 inch, 4k dis-
play at 30Hz supporting touch and pen interaction. We conducted the 
study with a large display, to provide participants the space of a large 
display area to be able to layout view arrangements and use space to 
think [1]. 

3.4 Procedure 
Each session lasted approximately 1½-hours, and consisted of three 
phases. In the introductory phase, participants were briefed about the 
study; signed a consent form; and answered a short questionnaire 
about demographics and experience with data analysis, visualizations 
and the data and technologies used in the study. We then introduced 
the OECD dataset used in the design scenes. 

The main phase of the session consisted of two parts. In part A, 
participants looked at and interacted with the seven scenes that each 
visualized some aspect of the OECD data and included some meta-
visualizations. In part B, participants sketched their own relations rep-
resentations between scene views based on a description of the views. 
They sketched on top of the same design scenes stripped from showing 
view relations. Participants used a digital pen to sketch. To account 
for bias from exposing participants to our representations before 
sketching their own, half of the sessions were conducted in AB order 

Fig. 1. Overview of design scenes. Full resolution images are available
from supplemental material and interactive versions from
http://website. 

 
Fig. 2. Process of analyzing screenshots from experiments. The sketch area (center) shows a sketch by participant 5 in scene 1 (see fig. 1). We 
analyzed the 70 sketches by identifying between-view relation concepts which we present in the study results section. 
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(i.e., first part A, then part B), and the other half in BA order. Simi-
larly, the order of scenes was randomized to not favor specific scenes, 
although within sessions, part A and B used the same order. 

During part A, we probed participants with questions about what 
they saw. We asked factual questions, descriptive questions, and eval-
uative questions. for instance, we asked participants to tell us the GDP 
in 2010 for Canada, to describe the relations between two views, and 
to state their preferences for the relations shown. After experiencing 
and discussing a scene, participants were invited to ask questions 
about the representations, enabling us to improve our knowledge of 
their interpretation. We continued to the next scene, when participants 
had answered our questions, and we theirs. 

During part B, we probed participants with questions similar to 
those in part A. This time relating to what they sketched. We asked 
participants to describe their sketches and choices of representations. 

In the concluding phase, we debriefed participants in a short semi-
structured interview. During this interview, we asked participants; (a) 
which benefits and disadvantages they observed from seeing the rela-
tions represented visually; (b) which relations seemed most important 
and why; and (c) which methods of representing relations seemed 
most useful and why. Finally, we asked participants about the study 
methodology. We asked how they thought the tools they used during 
the session had influenced their ideas and sketches (e.g., if they felt 
limited by the detail they were able to sketch or choice of pen color). 

3.5 Data collection 
We recorded the experiment using a video camera pointing towards 
the display from an approximate 30-degree angle at approximately 4 
meters distance, zoomed to show the 84” display centered in the im-
age. An audio recorder was setup close to the display to make sure that 
we obtained a good and intelligible audio signal. Additionally, we 
used software to grab the display state during the experiment. 

3.6 Analysis 
We analyzed the recorded material based on a grounded theory ap-
proach [16, 25]. Although we started the study with some ideas of 
what to look for (based on related literature [6, 7, 29, 30, 32, 8, 11, 13, 
18, 17, 22, 23, 26]), we also looked for new ideas and concepts while 
analyzing the gathered data.  

In the first analysis pass, the first author went through all the ma-
terial, keeping notes of interesting moments while obtaining an over-
view of the material. During this pass, findings were discussed with 
the second author in meetings held for approximately every 60 
minutes of observed video. Concluding this pass, we identified major 
themes that we wanted to develop. In the second pass, notes taken dur-
ing the first pass were used to revisit the video source material in con-
text of the major themes. During this pass, we used screen captures of 
the final state of views and sketches for each of the 7 scenes in part A 
and B. We base the following section primarily on our analysis of the 
identified themes, as well as findings from these images (see figure 2). 

4 STUDY RESULTS  

In this section, we describe our observations of participants’ behavior. 
Participants told us about their design ideas, both criticisms and sug-
gestions, either verbally, or via gestures, or with sketches and annota-
tions. In analyzing the observations, we gave equal weight to all the 
different ways in which they indicated their ideas. We read the tran-
scripts, we watched the videos, and we looked at the visuals on the 
screen captures. As concepts for codes emerged, they often would in-
clude a range of possible participant indications. Also in converse, a 
particular design for showing meta-view relations would often make 
use several of the concepts for which we coded. Table 1 provides an 
overview of the countable results according to our coding concepts.  
The rows in Table 1 are the concepts, the columns, S1 to S7, are the 
scenes. Column D stands for concepts that emerged during the debrief-
ing and column T is the total number of participants who used this 
concept. Note that T does not add the numbers in the row because it is 
possible that one participant used a particular concept in many scenes. 

4.1 Illustrating our coding concepts 
Here we provide a brief definition of each of our coding concepts and 
illustrate them with both common and more unusual examples. 
 
Task: covers all situations where participants considered the tasks that 
representations of between-view relations might support. 

Examples include a participant stating that the importance of see-
ing particular types of relations is dependent on tasks and goals: “It 
depends on what you want. If you want to follow a specific country, 
then this relation, in that case is more important. It completely de-
pends on the context”. 
 
Interaction: covers all situations where participants considered inter-
action as part of seeing, understanding or showing relations.  

Examples include considering how interaction could help to set up 
relations, for example by dragging colors from a palette over the at-
tribute tree in scene 7. The participants often moved views by rotating 
(figure 3, right) or aligning views spatially would show their relation. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Brushing & Linking: covers participants’ sketches of or considera-
tions for the use of brushing and linking to show relations between 
views. As expected, brushing and linking were well known to partici-
pants and were often referred to in passing as possibilities to be used 
in addition to other types of between relation representations.  

Examples include brushing the histogram in scene 1 to highlight 
parts of data bars in another view (see Figure 4) or suggesting only to 
use color for temporary encodings (i.e., brushing and linking). 

 
 
 
 
 

 
 
 
 
 

 

 

Fig. 3. Participants considered different methods of interacting with 
views to configure and show relations and their representations. 

Fig. 4. A participant sketched a compact design for scene 1 in detail.
The design involved brushing and linking between views at the same 
hierarchy level. 

Concepts Scenes  
 1 2 3 4 5 6 7 D T 
Task  1 0 0 1 1 1 0 1 2 
Interaction 2 2 1 3 1 1 4 3 6 
Brushing & Linking 1 2 0 2 1 1 1 0 3 
Axis Relations 3 1 3 2 2 5 0 1 5 
Legend Relations 0 3 0 0 0 6 1 1 7 
Grouping Views 4 3 2 4 2 1 0 1 8 
Visual Components 8 6 7 6 7 7 4 0 9 
Re-use of within-view Representation 4 4 0 0 2 2 1 0 7 
Direction, Flow & Order 4 1 1 0 0 1 0 0 5 
Line Arrows 5 3 3 2 4 5 2 0 7 
Strength 1 2 0 1 1 0 1 0 4 
Clutter & Scalability 1 3 0 1 0 1 2 4 4 
Interference with Views 5 1 2 0 1 0 1 1 6 

Table 1. Overview of results showing the number of participants
considering a code. Second last column, D, shows debriefing. Last
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Axis Relations: covers all methods of showing that two or more axes 
or parts of axes relate. Axis relations included axes that encoded the 
same attribute, axes that encoded the same or an overlapping value 
range of an attribute, or simply axes that encoded related attributes. 
Examples include participants sketching relations between axes by 
highlighting axes (see figure 2) to help obtaining an overview of what 
the different views showed; or connecting axes’ ranges by lines. A 
participant commented that different aspect ratios between two views 
made it difficult to see that one showed a zoomed view of the other. 

A participant considered that sometimes views that look alike or 
dissimilar, which is difficult to spot without some kind of support: 
“The fact that you have three visualizations that all look very similar, 
while one of them have different axis labels. I feel like that should be 
highlighted in some way, right. Cause otherwise you’re playing this 
game of spot the differences. And I don’t think [people] are very good 
at that”. The participant later noted for scene 7’s relation representa-
tion “at a glance you know that none of the axes are the same”. 
 
 
 
 
 
 

 
 

 
 

Legend Relations: covers all methods of showing legends or parts of 
legends that relate, and included identical legends, legends that used 
the same spatial layout for data, and legends that partly represented 
the same meta-data. 

Examples include connecting rectangles sketched around similar 
legends in two views and extracting legends from views and connect-
ing one legend to all the views. A participant stated, “it is nice that the 
spatial position of legend items [match across views]”. 
Grouping Views: covers different methods that participants sug-
gested for grouping views. 

Examples include favoring the possibility of seeing more data in 
one view, integrating two or more views into one. or encircling multi-
ple views to show that they were similar such as showing the same 
data, or using the same encoding. A participant suggested to “connect 
views that show the same data with curvy or dotted lines”. We also 
observed the shaded area in scene 1 that was used to group views, 
tended to confuse participants until provided an explanation. 
Visual Components: covers all situations where participants consid-
ered which components of a view to use in representing relations.  

Examples include situations where participants explained their rea-
son to use particular components (“I want to connect this to the legend 
to reduce clutter” or “I connect to the legend to not interfere with the 
lines”, see Figure 6). 

Participants used all the different visual components of the view, 
the data and the meta-data. For instance, they connected data points 
and bars to other views’ borders and sketched rectangles to group parts 
of data in one view to data in other views. A participant considered 
how to show an overview plus detail relation between two line plots, 
and suggested to connect the line start and end points in the detail 
view. 

 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
Re-use of Within-View Representations: covers visual designs 
where participants used parts of the views’ representations to show 
relations between views.  

Examples include re-using the color of linked data points for the 
color of the link; connecting data points in one view to data bars in 
another view; using line end points to encode the specific data values 
on the vertical axis in both views (see figure 2 and 8); and merging 
lines from multiple legend items and connecting these to data bars in 
other views, allowing line thickness to represent the fraction of the 
data bar indicated (see figure 7) to “encode more information”. 

 
 
 
 
 
 
 
 
 
 

 
 
Direction, Flow & Order: covers situations where participants con-
sidered conveying view relations’ direction, the flow of data between 
views, or the reading order of views. 

Examples include participants saying that some marks “make you 
read the visualization in a specific order”; while arranging views, stat-
ing “I am reading it left to right, top to bottom”; or stating “so this 
takes that data over there [pointing with both hands]”, and showing 
with hand gestures how views connected, suggesting that the visuali-
zation was “trying to tell a story”. 
 
Line Arrows: covers participants’ use of arrows in sketching. All par-
ticipants drew arrows similarly except for one, who drew arrows in 
the opposite direction. 

Examples include arrows between data bars and legends, which 
were suggested to show less direct connections between data in the 
two views (see figure 9); and arrows between country legend items 
grouped according to their continent and views that show this conti-
nent (see figure 9). 

 
 
 
 
 
 
 
 
 

 
 
Strength: covers situations where participants talked about relations 
or connections in terms that relate to strength or when they sketched 
relation representations that conveyed strength. When considering 
weak relations, the participants mainly described the relations as 
“weak” or “not strong”, whereas they mainly used “important” when 
considering strong relations.  

Examples include stating “This connection is not strong” regard-
ing a relation between two bar charts in scene 5 that showed the same 

 
Fig. 5. A participant sketched axis range relations between two views
in scene 3. 

 

 
Fig. 6. A participant sketched a relation representation between a
legend and a view in scene 6. 

 
Fig. 7. A participant connected line start and end points in a detail
view with the same points in an overview in scene 3. 

 
Fig. 8. Two examples of participants’ re-use of within-view 
representations in scene 2. 

 
Fig. 9. Two examples of participants’ use of line arrows. Left, line arrows 
connect from a data bar to a legend. Right, line arrows connect a
legend item group to a view. 
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data with different aggregations; using curvy lines to signify weaker 
relations than straight lines. 
 
Clutter & Scalability: covers situations where participants consid-
ered the problems that showing many between-views relations can 
cause, by hiding or cluttering the data shown within views. 

Examples include connecting lines from data bars in a bar chart to 
legends in a scatter plot instead of connecting to data points, to reduce 
clutter; using transparency for links between data bars and data points; 
and expressing concerns for using the same color across many views. 
 
Interference with Views: covers any added visual indications of view 
relations that decrease peoples’ ability to focus on or understand data 
shown within views. In contrast to Clutter & Scalability that consider 
the amount of shown relations, this concept highlights that few poorly 
designed between-view representations can negatively affect compre-
hension. 

Examples include concerns that highlighting a views’ border and 
axes to indicate an overview plus detail relation between two views 
took focus from the data in the detail view; and concerns about be-
tween-view lines connected to within-view lines. 

5 FROM CONCEPTS TO DIMENSIONS 

In the results section, we described detailed observations from study-
ing participants’ considerations about view relations as concepts, 
which we based on open coding from our analysis. These concepts 
worked well to convey the range of thoughts and ideas that partici-
pants expressed. However, to make them useful, we needed to exam-
ine these concepts from the perspective of providing practical advice 
about designing concrete meta-view relation representations. To eval-
uate existing use of meta-view relations and to offer generative advice 
about creating new ones, we needed concrete, practical suggestions of 
what to consider. Therefore, using these concepts as a basis, combined 
with drawing from the literature, we assembled a framework that is 
composed of six different dimensions of view relations. 

We provide an overview of the mapping between concepts and di-
mensions in Figure 10. The concepts we used for coding are on the 
left hand side. The framework dimensions; design intent, visual com-
ponents, re-use of view representations, direction, strength, and inter-
ference with views are on the right hand side. Note that two of the 
framework dimensions, design intent and visual components, have 
sub-components. The colors are used to reinforce the framework 
groupings and the edges in the bi-partite mapping are colored accord-
ing to their destination framework dimension.  Some coding concepts 
like strength map directly to a framework dimension. Others, like vis-
ual components, map to visual components in the framework but re-
quired dividing for practicality.  This is because the concept visual 
components concerns both the general idea of choosing the compo-
nents that are used as part of showing relations, as well as the individ-
ual possibilities. Likewise, the concept “axis relations” concerns 
showing encoding relations, as well as using meta-components as part 
of showing relations. This does not exclude the idea of showing such 
relations with another visualization technique 

Whereas many coding concepts described the visual properties that 
could be used in the meta-representations that participants considered, 
the dimensions consider properties of the views’ relations in them-
selves, which might be shown with different visual properties or tech-
niques. The dimensions of view relations are loosely orthogonal. This 
means that it is possible to design for one dimension at a time, alt-
hough it may be more effective to consider the dimensions together. 
Next, we present the framework. 

6 THE DIMENSIONS OF VIEW RELATIONS FRAMEWORK 

The many techniques to show view relations as presented in related 
research, inspired us in designing this study. Many similar as well as 
many novel view relations techniques are present in our study results. 
We take our results, combine them with related work, and introduce a 
framework, Dimensions of View Relations. In describing our results, 

we focused on participants statements. In contrast, the framework con-
siders view relations in terms of possibilities. Additionally, the frame-
work draws upon a broader foundation, also pulling from other re-
search.  

The framework offers six dimensions of view relations and their 
representations: design intent, visual components, re-use of view rep-
resentations, direction, strength, and interference with views. Next we 
describe these six dimensions and their components, followed by an 
explanation of making use of the framework. 
 
1. Design intent considers what the purpose is of showing a relation 
representation, from a designers’ perspective. Thus, a design may be 
useful for other purposes than what the focus of the design was, and a 
single design may cover more than a single design intent. We used the 
word intent because intent captures a designs’ idea, rather than what 
it enables. Intent can be multi-faceted: a relation representation that 
shows data relations may also show process. For example, if a view 
shows a subset of data points from another view and the data points 
are connected, then the relation shows both data and process. In the 
following, we describe five design intents of showing relations: 
a. Data relations intend to show the relation between data present in 

two views, conveying which data is affected using different visu-
alization techniques, choices of encoding, or data processing. Ex-
amples of showing data relations include using color similarly in 
two views (see S2 to S7) and linking data points across views (S2, 
[7, 23, 29]). Participants considered data relations in all scenes. 

b. Process relations intend to show how data has been processed or 
transformed between two views, e.g., through filtering, aggregat-
ing, deriving, or any other process. Lark [26] and ExPlates [18] 
showed processing explicitly with lines connected to views. 
GraphTrail also used line connections [8], but was not explicit 
about how data had been processed between views. VisTrails [4] 
conveyed process implicitly through views’ spatial position. 

c. Encoding relations intend to show the data encoding differences 
or similarities between two views, e.g., by using highlighting or 
connecting axes, or connecting legends. In Lark [26], views’ en-
coding relations were shown explicitly through the InfoVis pipe-
line representation. 

d. Interaction relations intend to show how views relate based on 
people’s interaction with views, e.g., by having used one view to 
create another or by whom created or positioned a view. Graph-
Trail [8] and ExPlates [18] (to some degree also ConnectedCharts 
[29]) used interaction relations to show analysis history, while the 
intention with Lark [26] was to support collaboration by showing 
interaction relations. 

e. Coordination relations intend to show how views are coordinated, 
e.g., by brushing and linking techniques. We are not aware of any 
related work that shows coordination relations explicitly. A par-
ticipant in our study suggested these relations might be experi-

 

Fig. 10. Mapping the results’ concepts to dimensions of view relations.
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enced through interaction (e.g., brushing). We suggest that show-
ing coordination relations explicitly may be useful in contexts 
where many people use many views. 

 
2. Visual components delineate the different components that can be 
involved in showing view relations. These may be ordered in a three-
level hierarchy: 
a. Data components comprise visual marks that represent data: 

points in scatterplots, bars in bar charts or rectangles in treemaps. 
VisLink [7] shows relations between data components. 

b. Meta-data components comprise factors included in the visuali-
zation to help with readability such as axes, legends, and grid 
lines. For example, Semantic Substrates [23] showed relations 
from a squared area (meta-data components) to data points (data 
components). 

c. View components comprise factors that contain and separate the 
view from the rest of the display such as view borders, corners, 
background, and title. GraphTrail [8] used line connections be-
tween views’ borders (view components). The color of the line 
mapped the selected data in views (data components). 

Because all relations are between two views, different component lev-
els might be involved in the two views.  
 
3. Re-use of view representations captures how data encodings used 
within views may be used in relation representations. For example, a 
line connection between two views can use the views’ internal color 
encoding to color the lines. Similarly, a bar in a bar chart may be di-
vided into a stacked bar, thereby using the spatial layout of the bar 
chart to make it easier to understand a relation to another view. 

We denote relation representations that re-use views’ representa-
tions as consistent with the view representations. Lines colored similar 
to the data points they connect are consistent relation representations. 
Likewise, we denote relation representations that use the views’ rep-
resentations to convey separate information as inconsistent. Lines rep-
resenting view to view relations that are colored similar to data points 
in the views are inconsistent. 

While we are not aware of work that focuses on re-use of view 
representations, the idea is used in some systems. For example, 
VisLink and Elzen & Wijk [7, 9] used colors within views to color 
lines between views, while ConnectedCharts [29] used the position of 
data points to anchor relation lines to axes and chart edges. In contrast, 
this was frequently discussed by our participants (7/10). 
 
4. Direction of relations captures that view relations can be can be 
directed or undirected. If source and destination views exist, the meta-
view representation may show this. For example, an arrowed line may 
connect a source view to a destination view [31], views’ position may 
show direction (e.g., using reading order) [4], a line may connect the 
right side of a source view to the left side of a destination view [18], 
or views’ component hierarchies may show direction (e.g., a line be-
tween a data bar and a view show direction implicitly from the data 

bar to the view). This also implies that representations of directionless 
relations might focus on showing relations between components at the 
same level of the component hierarchy (i.e., data to data, meta-data to 
meta-data, or view to view). 
 
5. Strength of relations captures that view relations can vary from 
weak to strong and the relation representation can reflect this, simi-
larly to the notion of edge weight in graph data. Strength may com-
prise both negative and positive values, thus implying that representa-
tions may show that two views are related or unrelated, for example 
to show that two views that look similar are actually different. Any 
relations between views can influence how to show strength, such as 
interactions with the system (e.g., brushing, proximity data, and user 
profile) and the visualized data (e.g., amount of common data points). 
Additionally, combinations of relations can be part of numerical com-
putations of strength, which visual representations can show directly 
or alternatively, influence when to show a relation. Most systems 
show strength implicitly by showing a subset of possible relations, 
based on an assumption of a static importance metric. For example, 
hovering over data points to highlight related data points (i.e., brush-
ing and linking) uses binary interaction data (hover/not hover) to show 
binary relation strength (highlight/don’t highlight). 

Elzen & Wijk [9] and Henry et al. [13] used aggregate links in 
which size encoded number of links between views (in what is de-
scribed as an overview) and adjacency matrices, respectively. 
 
6. Interference with views captures that view relation representations 
may interfere with within view representations. It is thus important to 
consider this in designs of relation representations. For example, to 
reduce interference, line connections between data points in two 
views, may consider the spatial layout within views by routing lines 
around other data points. Similarly, aggregating lines, connecting to 
labels rather than data points, or aligning lines to axes or borders, can 
reduce interference. Additionally, color used to show relations might 
interfere with within-view representations, if using conflicting or 
strong color encoding possibly, taking focus from the view itself. 

Steinberger et al. [24] routed lines along view borders to reduce 
occlusion of salient regions. Similarly, Viau & McGuffin [29] fixed 
lines connecting data points to axes and view borders to reduce clutter. 

7 THE FRAMEWORK IN ACTION 

In this section, we will show how the framework may be used, both to 
describe existing research prototypes and to generate new relation rep-
resentation designs. 

The dimensions in this framework may be combined to describe 
existing relation representations and to generate new ones. For in-
stance, in the literature there are many examples that show combina-
tions of these dimensions. Note, that although the dimensions describe 

Fig 11. Overview of framework dimensions used to describe related work in terms of the framework. For design intent and components, top
means that the work considers the dimension. When work is not positioned top or bottom in a dimension, the dimension is only partly 
considered. For example, DragMag is primarily designed to show the connection between detail views and the overview, and partly designed 
to show where the detail view has been positioned in the overview. Meta-data and views are used in DragMag. Direction (why). Strength (why). 
Re-use (why). The connections between views interfere somewhat with the overview.
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important aspects of view relations representations, they do not de-
scribe all relevant aspects. For example, the dimensions do not de-
scribe the style of the representations. 

To show the descriptive power of the framework, we will traverse 
it by walking through how Semantic Substrates [23] fits in the frame-
work as shown in figure 11.  By walking through it, we will demon-
strate how it is possible to use the framework to consider each dimen-
sion of how relations are shown between views. 

In the framework diagram (Figure 11), Semantic Substrates [23] is 
at the top of the left hand list of related research. Following its brown 
line from left to right, we see that the design intent of Semantic Sub-
strates is data and encoding.  Semantic Substrates shows data relations 
since they link data item to data item. Further, they make use of en-
coding when they reduce links between the views to specific regions 
of the views. Next, under visual components, we see that Semantic 
Substrates shows both data and meta-data relations. Shneiderman et 
al., [23] state that they aimed to show directionality in their links for 
which they use arrows. This is also shown in the framework dia-
gram.  The brown line for Semantic Substrates is drawn through the 
middle of the strength box in the framework diagram, because links 
are shown based interactions rather than assigned some system based 
weight. The way Semantic Substrates uses color for the links is a sub-
tle example of re-using within-view representations in between-views 
relation representations, which is why it is marked above the middle 
in the framework diagram. Finally, node-link diagrams often results 
in clutter, and this can with lots of links in happen in Semantic Sub-
strates as well. Although, the way their interaction helps to handle 
clutter made us position it towards the middle of the framework dia-
gram.  

8 DISCUSSION 

Here we discuss the framework dimensions and their implications. 
Since our participants were mostly designers (either interaction de-
signers, or visualization designers) when we asked them to think about 
the between-view relations, they discussed and acted upon this by con-
sidering possible designs. This section reflects much of their discus-
sions as they talked about what they would consider important in de-
signing between-view relation representations. 

8.1 Design intent 
Many participants considered the role that task and context has in 
showing view relations. Participants underlined that an optimal solu-
tion for a given problem depends on the task. Thus, in designing rela-
tion representations, just as any other visualization, it is often a matter 
of understanding which tasks to support, and then designing for that 
task. We describe the potential task our participants considered, and 
describe how they suggested showing relations that might support a 
task. 

Participants almost never considered using relation representations 
to understand data in itself. The large majority of participants that con-
sidered how to understand data, considered this by combining data 
from multiple views into one view, thus disregarding the idea of keep-
ing data in multiple views. This contrasts other work that has aimed to 
use relation representations to help people understand multidimen-
sional data (e.g. [7, 29]) using e.g., coordinated views. Since the liter-
ature has many examples of successful between view relation repre-
sentations that focus on relationships between data in separate views, 
we still consider this an important part of the framework.  

Nine participants considered process relations, through sketching 
arrows, gesturing direction, or talking about data flow. Representing 
such relations was important to participants, and they considered var-
ied possibilities for showing these. In contrast to how Lark [26] 
showed indirect relations between views by incorporating the InfoVis 
pipeline, most participants considered showing data process relations 
directly between views or their visual components, and stated they 
preferred such direct representations. 

Participants considered many variations of relations between meta-
data components. According to participants, they sometimes consid-
ered these due to the connected data or the data relation. Particularly, 
participants suggested many designs that involved axes and legends. 
These designs helped reveal how different views showed data in sim-
ilar or different ways. For example, the designs in scene 3 and 7, fo-
cused on scale and hierarchy in axis relations. When participants 
worked with these scenes’ axis relations, they primarily considered 
how to support navigation and how to understand the views’ similar-
ity. While participants considered supporting these goals by showing 
relations between meta-level components directly, they also consid-
ered encircling groups of views for a similar effect. 

Participants considered interaction in mainly two aspects. First, 
participants considered interaction in the way of e.g., brushing and 
linking. Second, participants considered views related through inter-
action. For example, they considered that relation representations can 
tell a story about data or show that data in one view is based on data 
in another view. Few participants however, considered showing these 
relations (e.g., as in GraphTrail [8]).   

Participants rarely considered coordination relation representa-
tions. In fact, when asked, participants found these relations to be un-
important and suggested these relations may simply be experienced 
through interacting with a system. We are doubtful whether this scales 
to showing more than a handful of views, but suggest that more re-
search is needed to understand this. 

Our results suggest that many of the tasks that relation representa-
tions may support, are meta-level tasks (e.g., obtaining and keeping 
overview of views). For example, although participants considered re-
lations that could help understand data, they focused on relations be-
tween views that might help meta-analysis tasks such as navigation. 

8.2 Visual components 
The participants considered a large variety of visual components to 
show relations: Points, bars, lines, axes, axis legends, axis labels, leg-
ends, legend items, view frames, and groups of views. While sketch-
ing, participants carefully considered how to show relations and which 
visual components to use. From these, we have identified three groups 
of visual components: data components (e.g., data points, bars, and 
lines); meta-data components (e.g., axes, axis legends, axis labels, leg-
ends, and legend items); and view components (e.g., view borders, 
corners, background, and title). 

An example of the usefulness of distinguishing between visual 
components arose in scene 5, where participants raised concerns about 
a relation representation that used both data and view components. 
The scene used a colored line connected from a data bar in one view, 
to the border of another view, but the color of the line matched colors 
of data in both views, thus posing a problem; where the line connec-
tion indicated a data-to-view relation, the color indicated a data-to-
data relation, thus making the relation unclear. We suggest this prob-
lem arose because the design used different components to show the 
same relation. On the other hand, a participant sketched a design for 
scene 1 involving data components in two views and view components 
in one of these, which worked well to convey the relation (see figure 
2, bottom-left). We find these contradictory results interesting, and 
suggest that more research is needed to understand when to use and 
when to avoid using multiple component levels in showing relations. 

Participants suggested that views with similar legends might share 
one legend arranged in a separate rectangle from the views (i.e. using 
its own spatial arrangement, cf., section 2). This raises the question of 
whether it is useful to make a clear distinction between a view and 
relation representation. Similarly, from participants’ considerations, 
we question whether to understand view 1 in scene 7 as a view or a 
meta-data visualization. 

What is considered a data component in one view might be con-
sidered a meta-data component in another, thus questioning the con-
cept of visual components. For example, two views may show the 
same attribute differently. In one view, aggregate data bars may show 
several attributes. In another view, an axis may show one of these at-
tributes. The result is that the visual representation of the attribute is 
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considered data in one view, and meta-data in another. In this light, 
some notions may make sense with-in views, and some notions be-
tween views. 

Participants knowingly suggested contradictory uses of visual 
components in a scene or in different scenes. This may be an indica-
tion that relations may be shown in different ways, depending on the 
visualized data, the context or task or other factors. 

8.3 Re-use of views’ representations 
The participants considered alternative techniques of showing rela-
tions by re-using within-view representations between views. In sev-
eral occasions, the techniques worked well to convey additional infor-
mation not present in the views. In other cases, re-using within-view 
representations worked less well, and may even confuse people. These 
ideas point to a broad range of possible visualization techniques, 
which currently seem underexplored. 

8.4 Direction 
Nine out of ten participants considered relations that showed direction. 
Often, participants sketched arrows with a great variety of visual 
styles. It appeared that the idea of showing direction was more im-
portant than the style. While arrows may not always be necessary, the 
number of arrows in the sketches is remarkable, considering their rare 
use in related work. 

Participants also considered inferring direction from views’ spatial 
arrangement (e.g., reading-order). This provides an argument for al-
lowing people to use spatial arrangement to annotate views’ direction 
relations in an implicit manner and repeats suggestions in earlier work 
(e.g., [8]). 

Although some participants almost exclusively sketched lines with 
arrows, all participants considered relations that had no implicit or ex-
plicit direction. In addition, some participants sketched two-way ar-
rows, which seemed to indicate bi-directionality direction. 

8.5 Strength 
Few participants considered relations’ strength. We mainly observed 
this from what participants said, for example, that one relation was 
stronger than another was. Strength was primarily observed in relation 
to interaction, where showing a relation could depend on the strength 
itself, as well as other factors (e.g., brushing, proximity data). Some 
participants used the notion of importance, to the same effect. 

Participants primarily talked about strength when considering 
whether to show a relation. Thus, while understanding strength as a 
continuous scale, the choice of whether to represent a relation seemed 
to be binary. Strength thus relates to visualizations based on degree of 
interest. A participant also talked about showing that views are differ-
ent, thus implying a type of weighting. 

8.6 Interference with views 
Many participants considered between-view relation representations’ 
interference with views. Some designs ignored the contents of views, 
except for the connection to other views. Other designs thoughtfully 
considered the contents of views, in relation representations. 

In some situations, participants considered showing relations to 
meta-data components instead of data components. Participants some-
times considered this to reduce clutter or possibilities for misleading 
visualizations, such as when connecting a relation line to a line. 

Many participants expressed concern that lines might interfere 
with data. Surprisingly, no participants suggested line shapes more 
complex than curvy lines. In contrast, they offered many suggestions 
for representing relations less indirectly to legend items or axes. De-
signs such as presented in Viau et al. [29], which anchored connec-
tions between views to axes or borders, were not considered. We ex-
pect that the tools such as pen, touch, and scale of sketches that were 
available to participants made such designs impossible, which meth-
odological inquiries during debriefing supports (e.g., “[I] could ex-
plain ideas when tools were inadequate”, “real whiteboard would 
have made it easier to draw”). Many participants considered clutter 

as the largest drawback of relation representations, both during ses-
sions and when asked specifically about drawbacks during debriefing. 

9 LIMITATIONS  

9.1 Scene designs 
The choice of scene designs that participants saw possibly introduced 
bias. Sources of bias include the choice of: 1) visualized data (OECD 
data), 2) visualization methods (scatterplots, bar charts, line charts, 
dendrogram), and 3) which and how relations were represented. Con-
sidering the visualization methods, participant 1 said: “Given these 
representations, I will only think based on the representations I have 
available”. Unsurprisingly, this means that a group of our findings re-
late closely to the visualizations used in the design scenes. However, 
there are many findings that can be applied more generally: The spe-
cific visualization types had little impact when participants considered 
how to show relations between data points in two views or to show 
views that make use of similar encodings. Consequently, we argue that 
the presented framework to a large extent is disconnected from the 
actual visualization methods, and does contain generalizable findings 
that may readily be used for other visualization methods. 

9.2 Scene order 
It is possible that seeing suggestions of view relations first influenced 
participants.  For example, participants who started by sketching (part 
B), used less time for sketching and their sketches were less detailed 
than the participants who started by viewing our relation designs (part 
A). This is shown in the average times participants spent. Participants 
in sequence AB spent 85 minutes in total (A: 53m, B: 32m), while 
participants in sequence BA spent only an average of 70 minutes (B: 
41m, A: 29m). In addition, analyzing screenshots of the final sketches 
of each design scene showed that BA participants had used less ink 
and had less detailed sketches than AB participants. 

Participants in AB session order were influenced from seeing our 
relation design suggestions. This is supported both from the sketches 
that participants drew, as well as participants’ verbal statements. The 
bias suggests that reversing session order for 5 participants was a sen-
sible methodological choice. On the other hand, sketches also show 
that participants that saw our relations before sketching, sketched 
more than participants who sketched their own ideas before seeing our 
relations. In addition, participants’ statements showed awareness of 
this bias. For example, a participant  said: “One thing I want to make 
clear is that, a lot of times I’m thinking, oh I saw that before, therefore 
I shouldn’t do that anymore. And I’m like trying to rethink how to do 
it”. In reverse, another participant said: “I was biased because I kind 
of remembered what you did, and some of them I liked, and some of 
them, I did not like, but I couldn’t think of different representations”. 
This suggests participants were biased both to sketch designs similar 
to, and different from, designs they had seen before. Many of our ob-
servations occurred across the two conditions. 

Another possible limitation is that the study set up was only par-
tially interactive. The participants could sketch freely, and could move 
views around. However, they could not make new views. Thus think-
ing about showing interaction relations may not have been a priority. 

10 CONCLUSION AND FUTURE DIRECTIONS 

Through noticing the growing prevalence of research on between view 
relationships and combined with discussion with data analysts who 
pointed out how important multiple views were with complex data, we 
identified the importance of directly studying to best represent 
between view visualizations. Considering the importance of being 
able to track complex, multi-person, multi-view analysis processes, 
we consider that our study on between view meta-visualizations is just 
a beginning of this research direction. However, our observational 
study generated a considerable amount of rich data from which we 
have derived a view relations framework, which offers six dimensions 
of view relations and their representations:  
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 design intent, 
 visual components,  
 re-use of view representations, 
 direction,  
 strength, and 
 interference with views.  
We illustrated this framework with examples from our study and 

showed how this framework can be used to describe existing literature. 
Figure xx, shows the framework dimensions and plots existing exam-
ple from the literature. In this diagram one can also see many possible 
paths that are not yet explored and may lead to new possible between-
view relation representations. Also the framework dimensions can be 
used as a practical guide, offering six topic that should be considered 
when designing between-view relation representation. 
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